참고문헌
- V. Cherkassky, D. Gehring, and F. Mulier, 'Comparison of adaptive methods for function estimation from samples', IEEE Trans. Neural Networks, vol. 7, pp. 969-984, July 1996 https://doi.org/10.1109/72.508939
- J A. Dicherson and B. Kosko, 'Fuzzy function approximation with ellipsoidal rules', IEEE Trans. Syst., Man, Cybern. Part B, vol. 26, pp. 542-560, Aug. 1996 https://doi.org/10.1109/3477.517030
- R. Rovatti and R. Guerrieri, 'Fuzzy sets of rules for system identification', IEEE Trans. Fuzzy Syst., vol. 4, pp. 89-102, May 1996 https://doi.org/10.1109/91.493903
- L. X. Wang and J. M. Mendel, 'Generating fuzzy rules by learning from examples', IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992 https://doi.org/10.1109/21.199466
- J. H. Nie and T. H. Lee, 'Rule-based modeling: Fast construction and optimal manipulation', IEEE Trans. Syst., Man, Cybern, Part A, vol.26, pp. 728-738, Nov. 1996 https://doi.org/10.1109/3468.541333
- A. G. Ivakhnenko, 'The group method of data handling; a rival of method of stochastic approximation', Soviet Automatic Control, 1-3, pp. 43-55, 1968
- V. Sommer, P. Tobias, D. Kohl, H. Sundgren, and L. Lundstrom, 'Neural networks and abductive networks for chemical sensor signals: A case comparison', Sensors and Actuators, B. 28, pp. 217-222, 1995 https://doi.org/10.1016/0925-4005(95)01721-6
- S. Kleinsteuber and N. Sepehri, 'A polynomial network modeling approach to a class of large-scale hydraulic systems', Computers Elect. Eng. 22, pp, 151-168, 1996 https://doi.org/10.1016/0045-7906(95)00033-X
- R. M. Tong, 'The evaluation of fuzzy models derived from experimental data', Fuzzy Sets and Systems., Vol. 13, pp. 1-12, 1980 https://doi.org/10.1016/0165-0114(80)90059-7
- C. W. Xu, 'Fuzzy system identification', IEE Proceeding, Vol. 126, No.4, pp. 146-150, 1989
- W. Pedrycz, 'An identification algorithm in fuzzy relational system', Fuzzy Sets Syst., Vol. 13, pp. 153-167, 1984 https://doi.org/10.1016/0165-0114(84)90015-0
- C. W. Xu, and Y. Zailu, 'Fuzzy model identification self-learning for dynamic system', IEEE Trans. on Syst, Man, Cybern., Vol. SMC-17, No.4, pp. 683-689, 1987 https://doi.org/10.1109/TSMC.1987.289361
- I. Hayashi and H. Tanaka, 'The Fuzzy GMDH algorithm by possibility models and its application', Fuzzy Sets and Systems, Vol. 36, pp. 245-258, 1990 https://doi.org/10.1016/0165-0114(90)90182-6
- Hideo Tanaka, Katsunori and Hisao Ishibuchi. 'GMDH by If-Then Rules with Certainty Factorsl', Fifth IFSA World Conference, pp. 802-805, 1993
- Box and Jenkins, 'Time Series Analysis, Forcasting and Control', Holden Day, SanFrancisco, CA, 1976
- M. Sugeno and T. Yasukawa, 'A Fuzzy-Logic-Based Approach to Qualitative Modeling', IEEE Trans. Fuzzy Systems, Vol. 1, No.1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
- H. Nakanishi, I.B. Turksen, M. sugeno, 'A review and comparison of six reasoning methods', Fuzzy sets and Systems, Vol. 57, pp. 257-294, 1992 https://doi.org/10.1016/0165-0114(93)90024-C
- E. Kim, M.-K. Park, S.-H. Ji, and M. Park, 'A New Approach to Fuzzy Modeling', IEEE Trans. Fuzzy Systems, Vol. 5, No.3, pp. 328-337, 1997 https://doi.org/10.1109/91.618271
- E. Kim, H. Lee, M. Park, M. Park, 'A simple identified Sugeno-type fuzzy model via double clustering', Information Science 110, pp. 25-39, 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
- S.-K. Oh, and W. Pedrycz, 'Identification of Fuzzy Systems by means of an Auto-Tuning Algorithm and Its Application to Nonlinear Systems', Fuzzy Sets and Systems, Vol. 115, No. 2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- T. Takagi and M. Sugeno, 'Fuzzy indetification of systems and its applications to modeling and control', IEEE Trans Syst. Cybern., Vol. SMC-15, No. 1, pp. 116-132, 1985 https://doi.org/10.1109/TSMC.1985.6313399
- Y. Lin, G. A. Cunningham III, 'A new approach to fuzzy-neural modeling', IEEE Trans. Fuzzy Systems 3, (2), pp. 190-197, 1995 https://doi.org/10.1109/91.388173
- A. F. Gomez-Skarmeta, M. Delgado and M. A. Vila, 'About the use of fuzzy clustering techniques for fuzzy model identification', Fuzzy Sets and Systems, Vol. 106, pp. 179-188, 1999 https://doi.org/10.1016/S0165-0114(97)00276-5
- S.-K. Oh and W. Pedrycz, 'Fuzzy Polynomial Neuron-Based Self-Organizing Neural Networks', Int. J. of General Systems, Vol. 32, No.3, pp. 237-250, 2003 https://doi.org/10.1080/0308107031000090756
- S.-K. Oh and W. Pedrycz, 'The Design of Self-organizing Polynomial Neural Networks', Information sciences, Information Sciences, Vol. 141, Issue 3-4, pp. 237-258, Apr. 2002 https://doi.org/10.1016/S0020-0255(02)00175-5
- B.-J. Park, W. Pedrycz and S.-K. Oh, 'Fuzzy Polynomial Neural Networks: Hybrid Architectures of Fuzzy Modeling', IEEE Trans. on Fuzzy Systems, Vol. 10, No. 5, pp 607-621, Oct. 2002 https://doi.org/10.1109/TFUZZ.2002.803495
- 오성권, 'C 프로그래밍에 의한 퍼지모델 및 제어시스템', 내하출판사, 2002. 1
- 오성권, '프로그래밍에 의한 컴퓨터지능(퍼지, 신경회로망 및 유전자알고리즘을 중심으로)', 내하출판사, 2002. 8