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DISTRIBUTIONS OF PATTERNS OF TWO FAILURES
SEPARATED BY SUCCESS RUNS OF LENGTH &

KANWAR SEN! AND BABITA GOvAL!

ABSTRACT

For fixed positive integers n and k (n > k + 2), the exact probability
distributions of non-overlapping and overlapping patterns of two failures
separated by (i) exactly k successes, (ii) at least k successes and (iii) at
most k successes have been obtained for Bernoulli independent and Markov
dependent trials by using combinatorial technique. The waiting time dis-
tributions for the first occurrence and the r'* (r > 1) occurrence of the
patterns have also been obtained.
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1. INTRODUCTION

In literature, many authors have obtained various probability distributions
related to runs, in independent Bernoulli as well as in Markov dependent tri-
als. In the classical literature, “a success run of length £ meant an uninter-
rupted sequence of exactly k successes (Mood, 1940). For example, the sequence
SSSSSSFFSSSSFES contains three success runs, one each of length 6, 4 and
1. Feller (1968) proposed the counting from scratch as soon as a run of length &
occurs, i.e., in the above sequence, there are three runs of length 3. Ling (1988)
proposed the concept of overlapping runs where an individual success can con-
tribute to at most k& runs. In the above sequence, there are six success runs of
length 3 by Ling’s way of counting. Goldstein (1990) counted the number of runs
of length & or more. The distributions of success runs of length & or more have
been termed as distributions of order k.
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The study of the distributions of order & in independent Bernoulli and Markov
dependent trials has been undertaken by various authors, Feller (1968), Ra-
jarshi (1974), Aki (1985, 1992), Hirano (1986), Philippou and Makri (1986), Ling
(1988), Koutras and Papastavridis (1993), Fu (1996), Koutras (1996), to name
a few. The study of runs has been found useful in various fields, particularly
in reliability, statistical quality control, molecular biology and DNA detection,
pattern recognition and matching, computer science, etc.

The method of run counting in various fields depends on the problem un-
der consideration. Feller’s method of counting is useful in renewal theory and
reliability theory, for example, in m-Consecutive-k-out-of-n: F systems (Papas-
tavridis, 1990) whereas in DNA sequence matching identical runs of length at
least k& (Goldstein, 1990) have been found useful.

A run is a particular pattern in which there are all identical elements. A
pattern is a specific string of outcomes and we say that a pattern has occurred
when a sub string of a sequence of outcomes exactly matches with the pattern.
There can be different elements and sub patterns in a pattern. For example,
Feller (1968) considered the distribution of “a success run of length r or a failure
run of length p”.

In this paper we have defined three patterns as

(i) Two failures separated by exactly k successes : F'SS--- SF;
N —
k

(ii) Two failures separated by at least k& successes : F§S---SF;
e —
>k

(iii) Two failures separated by at most & successes : FSS---SF.

<k
Hirano and Aki (1993) considered the pattern in (ii) in Markov dependent trials
and derived the exact probability distribution and probability generating func-
tion. Their result for p.m.f. involves solution of simultaneous system of linear
equations in n variables. Later in 1997, Koutras considered the waiting time
distribution of the same pattern for Bernoulli trials and obtained the p.g.f. and
moments.

These patterns are special cases of scan statistics. A scan statistic can be
defined as follows: Let X, Xs,..., Xn be a sequence of integer valued random
variables. For 2 < m < N — 1, consider the moving sums of m consecutive
observations. Then the linear unconditional scan statistics are defined as

S = max Y.
1<t<N—m+1
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where Y; = Zf;m—l X; (Glaz and Balakrishnan, 1999). These statistics are
widely used in various fields, including DNA analysis and protein detection
(Altschul and Erickson, 1988; Arratia et al., 1989; Leung and Yamashita, 1999),
epidemiology (Krauth, 1992a, b), mine field detection (Glaz, 1996), quality con-
trol and reliability theory (Balakishnan et al., 1993), radar detection and sociol-
ogy, to name a few.

Most of the work in the field of scan statistics has been focussed on the case
when X1, Xo,..., Xy are iid non-negative random variables, in particular 0-1 7id
Bernoulli variables. The dependent case for 0-1 Markov dependent trials was dis-
cussed by Glaz (1983) and Koutras and Alexandrou (1995). Krauth (1992a, b)
and Wallenstein et al. (1989) discussed the case of multinomial random vector.
In this paper we have obtained the exact probability distributions for r occur-
rences of patterns (overlapping and non-overlapping) in n Bernoulli and Markov
dependent trials. Waiting time distributions for 15* and r'* (r > 1) occurrences
of patterns have also been considered. In contrast to results of Hirano and Aki
(1993), we have obtained the results in terms of Binomial coefficients.

2. NON-OVERLAPPING PATTERNS FOR INDEPENDENT BERNOULLI
TRIALS

Let n and k be fixed positive integers such that n > k + 2. In a sequence of
n Bernoulli trials, let the possible outcomes be a success (S) and a failure (F).
Consider the pattern of length k& + 2 (k > 1) of two failures separated by a run
of k successes. We define the following random variables:

I

X,(lk) the number of times a pattern of length exactly & + 2 of two failures

separated by a success run of exact length £ occurs in n trials;

Y,,(,k) = the number of times a pattern of length at least & + 2 of two failures
separated by a success run of length at least k& occurs in n trials;

Z,(lk) = the number of times a pattern of length at most k£ + 2 of two failures
separated by a non-void success run of length at most & occurs in n
trials.

We state and prove the following results, which will be used in the sequel.

ResuLT 2.1. The number of ways of placing n indistinguishable balls into m
ddentical cells such that no cell receives exactly r balls is
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min([n/r],m) , .
N (s 1) = Z (—UJ‘(".L) (m+n—(r+1)j—1>' 2.1)

= ] n—rj

PrOOF. It is obvious that
N(n,m;~r) = coeflicient of z" in the generating function
(I+z+22 4 42742 )m
= coefficient of 2" in (1—— - zr)
-2z

= coefficient of z" in (1 — z)7™{1 — 2"(1 — z)}m

= coefficient of 2" in (1 — z)_mz (T){ -2 (1 - z)}j
J
: n (T jr if—mtI\
= coeflicient of z" in ;(—1)]<j>z7 Z(—l) ( ; )z

= R.HS. of (2.1).
m

RESULT 2.2. The number of ways of placing n indistinguishable balls into m
identical cells such that no cell receives more than r balls is

min{{n/(r+1)],m} ,
my/m+n—(r+1)7—1
Nmmir)= > <9) ( m(_ 1 )i ) 22)

3=0
(See Rosenstock and Maradudin, 1961; Papastavridis, 1990).

RESULT 2.3. The number of ways of placing n indistinguishable balls into m
identical cells such that no cell receives less than r balls is

m-}—n—mr—l)_ (2.3)

n—mr

.

RESULT 2.4. The number of ways of placing n indistinguishable balls into m
identical cells such that no cell receives more than r balls and less than [ balls
(r>1)is

N(n,m;r.l) = N(n —ml,m;r —1). (2.4)

We. then. have the following theorems.
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THEOREM 2.1. Forn>rk+2). k>1,

P{x{ =7}

#ni”i’“Kn—s—r_ 1> (7-+d+1>
s=rk d=0 " d (2.5)
XN(s—rk—dn—s—2r—1;~k)

n—s—r—1\/r+d o s s
+< .1 )( J >N(b—rk—d,n—s~2r,~k)pq ,

where r =0,1,2,...,[n/(k+2)], p=P[S], ¢=1—-p.

PROOF. Let s be the number of successes in n trials. Then, out of n trials,
r(k + 2) trials are exhausted in r occurrences of the pattern. Considering one
pattern as one outcome, the sequence now has n —r(k +2)+r = n—r(k + 1)
outcomes, of which s — rk are successes, r patterns and n — s — 2r failures, to be
arranged so that {Xy(lk) = 7} remaiuns true.

Now, between two failures, a success run of length k& cannot appear. However,
a success run of length & can appear between two patterns or a pattern and a
failure, i.e., after a pattern, without adding to the number of patterns. If S, F,
and F respectively denote a success, a failure and a pattern, then

FES: SES-SFFEFF
5 T

is one of the possible arrangements.
Two cases arise:

(i) The last failure happens to be an independent failure.
(ii) The last failure belongs to a pattern.

Case (i): If the last failure is an independent failure then r places (after r events)
are available where a success run of length k can occur. The n— s —2r —1 failures
and r patterus can be arranged in ("_S,__r”]) ways.

Let d be the number of successes placed in r places after patterns (0 < d <
s—rk) and at the beginning and at the end of the sequence. Since these successes
can be placed unconditionally so the number of possible arrangements is (HZH).
Remaining s — 7k —d successes are to be placed in n— s —2r — 1 places between

individual failures such that no place gets exactly k successes and the number of
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ways in which this can be done is N(s —rk —d.n — s — 2r — ;' ~ k). e.g., let
n=24r=k=2p=q=1/2;s=14 =>n—s = 10.

Let F stand for the pattern “FSSF”. For two occurrences of the pattern,
the numbers of exhausted successes and failures are 4 each and the number of
remaining successes and failures are 10 and 6 respectively. Then the following
arrangement is one of the possible arrangements where the places marked by =
denote the places where d successes can be placed unconditionally and ¢ denotes
the places where a success run of length 2 cannot occur as the occurrence of a
success run of length 2 at one or more of these places will either increase the
number of occurrences of the patterns or will result in shifting of the occurrence
of the patterns:

*FoE+xFoF¢FoFExFoFx.

Case (ii): If the last failure belongs to a pattern then r — 1 places (between
7 patterns) are available where a success run of length k& can be placed. The
number of ways in which n — s — 2r failures and r» — 1 patterns can be arranged

s ()

The number of ways of placing d (0 < d < s — rk) successes can be arranged
unconditionally in 7 + 1 places (r — 1 between patterns, one at the beginning of
the sequence and one at the end) is ("5%).

The remaining s — rk — d successes can be placed in n — s — 2r places such
that at no place, number of consecutive successes is equal to k. The number of
ways this can be done is N(s —rk —d,n —s — 2r;~ k).

In the above example, one of the possible arrangements is
xFoFoExFoFoFoEx
Combining the two cases and p®q"~® being the probability of a sequence, we
get (2.5). O
THEOREM 2.2. Forn>r(k+2), k>1,

P{v{¥ =}

n—2r s—rk

=33 [(”_3;“ 1><2T +(;l+1>N(3—d,n—s—2r— LE=1) (54

s=rk d=0

n—s—r—1\ (2 +d |
w0 T T N(s—dn—s—2r;k—-1)| p°¢"*,
r—1 d

where r =0,1.2.....[n/(k +2)].
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PRrROOF. In this case, r pairs of failures are separated by at least k successes.
In these pairs, we place rk successes. Now, we have s — rk remaining successes,
r patterns and n — s — 2r failures, the s — rk successes are to be arranged in such
a way that {Y,fk) = r} remains true. Then, as in earlier case, considering two
cases regarding the status of the last failure and observing that after a failure, a
success run of length & or more cannot appear (except possibly at the last trial
if it happens to be an individual failure), we get (2.6). O

THEOREM 2.3. Forn>r(k+2), k>1,

P{z¥ =r}
n—8s—r—1 r+s—s5+1
N(so,r;k,l)K . )( s—sz )

—s—r—1 -
xM(s—so,n—s—2r—1;k+1)+<n T ><T+S SO)
r—1 s — 8o

(2.7)

XM(s —sg,n—8—2r:k+ l)}psq”_s,

where r =0,1,2,...,[n/(k + 2)].

PROOF. The result can be proved on similar lines on observing that in r
pairs of failures, sg successes are to be placed in such a way that no pair gets
more than k successes and each pair gets at least one. The remaining successes
are to be arranged in remaining places in such a way that {Z,(lk) = r} remains
true. O

In the following theorems, we obtain the joint probability distributions of
above patterns.

THEOREM 2.4. For 0 <ry <ry <[n/(k+2)],
PEXID =y Y0 = 1)
(2 "—Z%”_Zrzk n—8—ro—1\/2ro+d+1—mr
T\ 9 d
s=rok d=0

XN(s —rok —d,n—s—2ry —1;k— 1) (2.8)

+ n—s—ry—1 27‘2+d—7‘1
o — 1 d

XN(s—rok—d.on—s—2ryk — 1)];0861"_5'
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PROOF. The event defined in L.H.S. of (2.8) is equivalent to the event
(X =, ) =y — 11} (2.9)

For this, 2r, failures are exhausted in occurrence of {Xy(lk) =71} and 2(rg —7;) in
occurrence of {Yn(kﬂ) =19 —71}. The number of ways in which r; patterns can
be selected out of ry is (7 ) We are left withn—s—ry (=n~s—2r1 —2(rp—71))
failures and ro (= r; + ro — r1) patterns.

For placement of successes, we put & successes each in 7, pairs of failures
and remaining s — rqok successes are placed in ro — r; pairs of events, 7, places
after events, between individual failures and at the beginning and the end of
the sequence in such a manner that (2.9) remains satisfied. Then, (2.8) can be

obtained on similar lines as earlier results. O
THEOREM 2.5. For 0 <7y <713 <[n/(k+2)],
P{X{ =1, 28 = 1y}

r n—2ry min{s,(ra—71)k} s—so—r1k
= ( 2) > > N(so,r2 =113k, 1)
d=0

1
s=rik+(rp—r1 1

X[(n—s—r>—1)2<m+d+1)

XxM(s—syg—rik—dyn—s—2ry—1;k+1)
—8—T9 — d

N n—s—rg—1\ [ra+d\
7‘2——1 d /‘

XM(S —sp—rik—d,n—s—2ryk+ 1)j|p5qn“5‘

(2.10)

THEOREM 2.6. For 0 <ry <ro,r3 <[n/(k+2)], k>1,

P{X}lk) = 7"1,Yn(k) =T2, Z,gk) = 7‘3}

B < ro 413 — 1 )
r,T2 —T1,T3 —T1

n—2r—2(r3—r1) min{s—rak,(ra—r1)k}

x > > N(sg,r3 —r1:k —1.1) (2.11)

s=rak-+trs—ry SQ=T3—T]

s_l%jmk n—s—ro—r3+r, —1\[(2ro+r3 —2r;+d+1
X
=0 T2+ T3 =T d
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+ n—s—ro—ry3+r; —1\[(2r9+1r3—2r; +d piqn.
ro+r3—1r;—1 d

PrRoOOF. The event {Xr(lk) = 7'1,Y,§k) = T'Q,Zy(Lk) = 73} is equivalent to the
event
{XI(Lk) =7, VI =y — oy, 207D =g — 1y }. (2.12)

n

Here, 2r; + 2(rg — r1) + 2(r3 — r1) = 2(ro + r3 — r1) failures are exhausted in
r9 + r3 — 11 occurrences of the events. The number of ways in which patterns can

( o+ 13 —1] >
1,72 —T1,73 — T

The remaining number of failures is n— s — 2(rg+r3—r1) and ro+r3—r; patterns

occur is

are there, among which successes are to be placed.

In ro patterns, put k successes in each pattern thus exhausting rok successes.
In r3 — 71 patterns put a total of sy successes in such a manner that at no point,
more than k — 1 successes occur and each pattern gets at least one. The number
of ways in which this can be done is N(sg,r3 —r1;k—1,1). Then, we are left with
s — 89 — rok successes, which are to be placed in between patterns and failures
such that (2.12) remains satisfied.

Now, between individual failures, no successes can appear. Also, no more
successes can be placed in 7y patterns of type two failures separated by a success
run of length & and r3 — 1 patterns of type two failures separated by a non void
success run of length at most & so the only places left are ro — r; patterns of type
two failures separated by a success run of length £+ 1 or more and after patterns,
t.e., atotal of ro —ry + 19+ 13 —7r1 = 2r9 + r3 — 2r; places. Then, proceeding as
in earlier cases, we get (2.11). O

REMARK 2.1. From Feller (1968. p.64),
i v+k-—1 . r+k
k-1 )\ k )
v=0

This implies

s—80 Tok (27~2 fry—2r +d+ 1>

d
d=0

B 3"’02_”,{ <27'2 +r3—2ry +d+ 1)
d=0 2ry + 13— 2m + 1
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(2Zrot+r3—=2r +2+ 55019k
B 2ro + 13 —2rp + 2
_ (8—50-—7‘2]{2 ‘I“2(7‘2 —-r+1) +7“3>
2rq+ry — 1)+ 73
and

STk (27“2 +r3—2r + d) _ <8 —-so—rok+2(rg —m +1)+r3+ 1)

—~ d 2(ro+r —1)+r3+1

Thus, (2.11) becomes

P{X,(lk) = rl,Yék) =79, ZT(Lk) = 7‘3}

_( Ty + T3 —T] )
r,T2 —T,T3 — 71

n—2ry—2(r3—r1) min{s—rok (r3—r1)k}

X > >, N(so,rs —r1;k—1,1)p°q" ™" (2.13)

s=rok+r3—7r] S0=73—T1

y (n——s~r2—7’3+7"1—1)<3 —so—rok+2(ro —r1+ 1)+ 73
To +7T3—T1 2(ro+711— 1)+ 13

L n—s—ro—r3+ri—1\[/s—sog—mok +2(ro —r1+ 1) +r3+1
ro+r3—1r1—1 20re+ri—1)+r3+1 .

3. WAITING TIME DISTRIBUTIONS OF NON-OVERLAPPING PATTERNS
FOR INDEPENDENT BERNOULLI TRIALS

To obtain waiting time distributions of the patterns considered in Section 2,
we define the following random variables:

X,(lk’r) = the number of trials needed for the 7" occurrence of a pattern of two
failures separated by a success run of exact length k;

Yn(k’r) = the number of trials needed for the 7t occurrence of a pattern of two
failures separated by a success run of at least length k;

Z,(Lk’r) = the number of trials needed for the rt* occurrence of a pattern of two
failures separated by a success run of at most length k.

x (k1) X(k)’ yk) — yk) zkl) — (k)
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Then we have the following results.

THEOREM 3.1. Fork > 1,

n—-2 s—k
P{X® =n} =33 N(s—sg—kn—s—2~kp°q"™, (3.1)

s=k s0=0

wheren=k+2,k+3,...

ProOOF. Partition the sequence of outcomes at a point where the event has
occurred

' Fs...SF
N —
k successes

1 11

Then in sequence I, there is no success run of length & except possibly in the
beginning and last trial is always a failure. Further, partitioning subsequence
I at the points where first success run ends, if it happens to be the initial run
and let sg be the number of successes in this success run. Then s — s — &
successes are to be distributed in n — s — 2 places such that at no place, a
success run of length k& occurs. The number of ways in which this can be done is
N(s—sg—k,n—s—2;~k). Hence (3.1). ]

THEOREM 3.2. Fork > 1,

PLx®D =} = fj sik <n o 1) (T o 1) (3.2)

s=rk d=0
X N(s—rk—d,n—s—2r;~k)pq" %,

where n > r(k + 2).

PROOF. In this case also, the sequence always ends with a pattern. After
forming r patterns, we have n — s — 2r failures, s — rk successes and r patterns.
The number of ways in which n—s—2r failures and 7 —1 patterns can be arranged
is (”T:I“l). Put d successes after patterns and at the beginning of the sequence
unconditionally. Then remaining successes are to be placed in remaining places
such that at no place, a success run of length & occurs. Hence (3.2). O
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THEOREM 3.3. Fork > 1,

n-2 s—k

P{YW=n}=3"3 N(s—so—kn—s-2k-1p'q", (3.3)
s=k s0=0

wheren=k+2,k+3,...

REMARK 3.1. The result can be obtained on partitioning the sequence as
in earlier case and then on observing that in remaining trials, no success run of
length k or more, except possibly in the beginning, is possible.

THEOREM 3.4. Fork > 1,
n—2r s—rk
—s—r—1\({2r+d-1
P Y(k’r) _ _ mn S T
{ SEDIDY r—1 2 — 1 (3.4)
s=rk d=0
x N(s—rk—d,n—s—2r;k~1)pSq" %,

where n =k +2,k+3,...

Similarly the distributions of Z*) and Z®*") can be obtained.

4. OVERLAPPING PATTERNS FOR INDEPENDENT BERNOULLI TRIALS

For overlapping patterns, we observe that a failure, which is not at either end
of the sequence can contribute at most to two patterns. For this case, we define
the following random variables:

< (k . .

X 51 ) = the number of times a pattern of length &k + 2 of two failures separated
by exactly k successes occurs when the patterns may overlap;

Vik) = the number of times a pattern of length at least k£ + 2 of two failures
separated by at least k successes occurs when the patterns may overlap;

7£lk) = the number of times a pattern of length at most k + 2 of two fail-
ures separated by at most k successes occurs when the patterns may
overlap;

_X—glk’r) = the number of trials required for 7" occurrence of a pattern of length

k + 2 of two failures separated by exactly & successes in overlapping
patterns;
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—(k . .
Y; ™) = the number of trials required for r** occurrence of a pattern of length

at least k£ + 2 of two failures separated by at least k& successes in over-
lapping patterns,

X"glkvl) — X(k), ?(kvl) —(k)

n =Y

Then, we have the following results.

THEOREM 4.1. Forn>rk+1)+2, k>1,

P{Xg>:r}:nifhi?u+1W?vf_l> (4.1)

s=rk d=0
XN(s—rk—dn—s—r—1,~k)pS¢"5,

where r = 0,1,2,...,[n/(k + 2))].

PROOF. In this case, (r + 1) failures can be used to form r patterns. Then.
the remaining n — s — 7 — 1 failures are to be arranged in r + 1 places generated
by r patterns unconditionally and the number of ways in which this can be done

. n—s—r—l4+r+1-1\ (n—-s-1

( r+1-1 ) B ( T )
For placement of successes, we observe that after placing rk successes in r pat-
terns, the remaining successes, i.e., s — rk in number, are to be placed in places
generated by n — s —r — 1 failures in such a way that at no place, except possibly
in the beginning and the end, a success run can be of exact length k. If d is the

number of successes put in the beginning and the end together, then (4.1) can be
obtained using the same argument as in non-overlapping patterns. C

THEOREM 4.2. Forn>r(k+1)+2, k>1,

P{v =r}
n—r—1 L s—rk s—rk—d s
= Z (71_:_ 1)2 Z N(s—rk—d.n—s—1;k—1)p°q" %, (4.2)
s=rk d=0 s51=0

where r =0,1,2,...,[n/(k+ 2)].

Similarly, the distributions of ?E,k). —X—glk) and Yflk) can be obtained from the
distributions of Z#T). Xv,(,,k’r) and Y,,(k'r) by replacing the number of ways in which

patterns can be arranged and then rearranging the limits.
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5. MARKOV DEPENDENT TRIALS

Now, instead of independent Bernoulli trials, we consider the case of two-
state, homogeneous {0, 1} valued Markov chain X, X»,..., X, with the possible
outcomes a success (S) and a failure (F) and with transition probability matrix

To
S F
(5.1)
From 5 P14t ;o prrg=1;t=12.
F P2 q2

Define S,, = the number of successes in n trials. We then have the following
theorems.

THEOREM 5.1. For initial trial a success and forn > r(k+2), k> 1, s =rk,
n—rk—r _ ook
P{x®H =r8, =5} = ( . )(p2p’f Lg) ghmR, (5.2)

and fors=rk+1,...,n—2r,

P{Xr(zk) =rS,= 3}

2 2 2

s—rk s—rk—s, min{r(k—1),s—rk—sa—s1}
(n -5 - 7‘)
r
51=0 s52=0 s3=1

min{n—s—2r,s3)

X Z N(s3,r1;1,~ k) (5.3)
ri=[s3/(k=1)]

min(r,s—rk—s1—s3—s3) (
r

* 2

ro=1

)]\/[(s— sy — 89 — 83 — rk,79;1)

2

XI[Ii,O] (Zj) p(lk_l)r+31p;—(k_l)r_slq;+T1+T2—1q£L—T—T‘1~T2+1’

where

“u, otherwise,

1, if i=0,
[{LO](U) = {
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and

N(s3,r1;1,~ k) = number of ways of putting s3 successes into vy cells
such that each cell has at least one success but not

exactly k successes,
i.e., N(s3,r1;1,~k) = N(sg—1,r;;~k—1),

where 7 =0,1,2,...,[n/(k + 2)].
ProoF. The four possible outcomes of a sequence are:
(i) S---8, i.e., a sequence starting with a success and ending with a success;
(i1) S--- F, i.e., a sequence starting with a success and ending with a failure;
(iit) F---S, i.e., a sequence starting with a failure and ending with a success;
(iv) F---F, i.e., a sequence starting with a failure and ending with a failure.

Partition the sequence of outcomes at the points where the first success run
(followed by the first failure) ends and where the last success run (preceded by
the last failure) begins.

Let s; be the number of successes in the first subsequence and sy be the
number of successes in the last subsequence.

...... [FFI
— S——
Sy 52
I II 111

If initial trial is a success, then for a sequence of type (i), 1 < sy <s—71k, 1 <
sy < s—rk — s, with probability contribution pgp‘fﬁ”_l to the total probability;
for type (ii), 1 < 51 < s —rk,sp = 0 with probability contribution pj'; for type
(iii), s; = 0, 1 < s9 < s — rk with probability contribution pgpfz_l; and for type
(iv), s1 = s2 =0.

Now, the subsequence II contains n — sy — so trials, in which there are r
patterns, exhausting rk successes and 2r failures. In these patterns, rk successes
and r failures (after successes) contribute (pgp'f ~1g1)" to the total probability.

Out of remaining n —s; —s9 —r(k+2) trials, s —s; — sy — rk are successes and
n—s— 2r are independent failures (1ot belonging to any pattern). The number of
ways in which r patterns and n — s — 2r failures can be arranged unconditionally
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is ("7°77). Then n — s — r — 2 places are available for placing s —s; — s — 7k

successes in such a manner that after a failure, no success run of length £ appears.
Let s3 be the number of successes, to be placed in r; places after failures such

that at least one success is placed and no place gets equal to k successes. The

number of ways in which this can be done is N(s3 — 1,7y;~ k — 1)("_;_27) with

probability (paq1)"pi* .

' Remaining s—s; —s2 — s3—rk successes are arranged in r places after patterns

T

in such a way that at least one success is placed in each cell. The number of ways
in which this can be done is M (s — sy — s — s3 — rk,72;1)(,]) with probability
(pgql)”p‘;'slh”_srrk. Remaining failures are placed with probability go each,
i.e., gy

Combining these components we get (5.3). (5.2) is obvious. Similarly results

—S§—r—r1—7r3

can be obtained when initial trial is a failure. g
THEOREM 5.2. For initial trial a success and for n > r(k+2), k > 1,

P{v" =1 8, = s}

2> > D

s0=08;=0 s2=0 s3=1

min{(n—s—2r),s3} n—s—2r min(r,s—sg—81~S2—53) - ( )
e 54
GNP S G B S €

ri=[s3/(k—1)] ro=1

rk s—sg s—sg—s1 min{r(k—1),s—s;—s2}
n—8—7r
T

X N(s3,71;1,k)M(s — so — 51 — 82 = 53,725 1) I[; ¢ <12)

s—r—r1—r2, r+r141r2 TA4TIHT2 N—S—T—T1—T2

XP Y2 q D) )

where r = 0,1,2,....[n/(k+2)), s=rk,...,n—2r.

PrROOF. In this case, r pairs of failures are separated by at least k successes.
In these pairs, we place sg successes in such a way that each pair gets at least k
successes.

Now. we have s — s¢ remaining successes, r patterns and n — s — 2r failures,
the s — sp successes are to be arranged in such a way that {Y,gk) = r} remains

true. The probability contribution of these sg + s; + s2 successes and r failures

(after successes) to the total probability is POt (pygy)” for sequences of

type (ii) and (iv) and p{ot51H527" =1yl for sequences of type (i) and (iii).
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The number of ways in which r patterns and n—s—2r failures can be arranged
unconditionally is ("*7"). Then n — s — r — 2 places are available for placing
s — $g — 81 — S92 successes in such a manner that after a failure, no success run of
length k£ or more appears.

Let s3 be the number of successes, to be placed in r; places after failures such

that each cell gets at least one success and no cell gets more than & — 1 successes.
nvs-Qr)

The number of ways in which these could be done is N(s3,7;1,k — 1)( "

with probability (poq1)1p5® gy T,

Remaining s — s —s; —s2 — $3 successes are arranged in 9 places (if any) after
patterns in such a way that at least one success is placed in each cell. The number
of ways in which this could be done is M(s — sg — s1 — s2 — s3,79; 1,k — 1)(T)

r2
)1‘2 $—80—S1—$2—S83

5 2. Remaining failures are placed with

with probability (p2q1 a5

nsrr1r>

probability gs each, i.e., gy
Combining these components, we get (5.4). O

THEOREM 5.3. For initial trial a success and forn >r(k+2), k> 1,

p{z) =r 8, =5}

rk s—sg s—sg—s) min{(n—s-2r),s—s0—s1—32}
(n — 85— 'r)

2.2 X >

s0=05,=0 s2=0 ri=1

min{r(k—1),s—so—s1—s2} min(r,s—sg—s1 —52—53)

X Z Z <T>M(83,7‘1;k5+1) (5.5)
T2

s3=(k+1)r1 ra=1

XM(s —sp — 51 — 82 — 83,72; 1) I[z 0] <Z?> P‘;ﬁrirl_rngwﬁw

Xq{"'” +7r2 q;l—s—rfn—m
?
where r = 0,1,2,...,[n/(k+2)], s=k,...,n—2r.
In the following theorems. we shall obtain the joint probability distributions
of these patterns.

THEOREM 5.4. For initial trial a success and for 0 <r; < ry < [n/(k + 2)],
k> 1,

P{XP =, v\ =1y 8, =5}

n—5—1ry s s—80 s—sg—sy min{ra(k—1),s—sp—sa}
LG 1D D i SUE

T
2 so=rok s1= 52=0 s3=1
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min(ry,s—Sso—S1—852—53) n—s— 2 min{(n-s-2ry,s3) ,
. —8—2r 2
X > ( . ) > (m) (5.6)

7‘3:[83/(/6—-1)] rq=1

XM(s—sg—s;—s2—83,74; 1) M(sg — 1k, 79 —r1;k+ 1)

XN(S.% r3; 1, k) I[/i,O] (gi) ps ramraT r4pgg+r3+r4

r2+7r3+re N-S—T2—73—T4

qu q2 ]
where r =0,1,2,...,[n/(k+2)},s =rk,...,n — 2rq.

PROOF. The event defined in the L.H.S. of (5.6) is equivalent to the event

{X,(lk) = Tl,YTSde =T — 7'1} (57)
For this event, 2r, failures are exhausted in occurrence of {X o 71} and
2(ry — 1) are exhausted in occurrence of {Yy vkt = r9 —r1}. The number of

ways in which r; patterns can be selected out of ry is (:;1") We are left with
n—s—2r; —2(ro —r1) =n— s — 2ry failures and ry (=r; + ro — r1) patterns.
Then, (5.6) can be obtained on similar lines as earlier results. OJ

THEOREM 5.5. For initial trial a success and for 0 <ry <ry < [n/(k + 2)],
k>1,

P{XP =1, 2 =1y, S, = s}

$—80 S—8g—s1 MIN(n—s—2rz,s—s0—$1—~52)

N EEE TS

T
so=r2k s1==0  s2=0 ra3=1
min(s—-sp—81—s2,72) min(r2,5—sp—851—52-53)
n—38—2ry 79
x> > (5.8)
T3 T4

s3=(k+1)ry ra=1_
XM (s —so = 51— 52 = 53, 74; 1) M (53, 73k + 1) I; o) (@)

§—T9—T3—rg, To2+r3+74 To+r3+r4 N—85—r2—T3—ryg

Xpy Do 4" qy )
where 1 =0,1,2,...,[n/(k+2)], s=71k....,n — 2rg.

NOTE. In above results, if any of the factors is equal to zero. then the cor-
responding components contribute unity.
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6. WAITING TIME DISTRIBUTIONS FOR MARKOV DEPENDENT TRIALS

Now, we obtain waiting time distributions of the patterns defined in Section 5.

THEOREM 6.1. For initial trial a success and k > 1,

P{X®) =n}
n—2 s—k s—sy—k min(s—s;1—s2—k,n—s-3)
_ Z Z Z <n —5— 3)
s=k51=0 s2=0 =0 "1 (6.1)

ri+l n—s—ri—1

(P2g1)™ gy ;

s—r1—1

XDy
where n =k +2,k+3,...

ProoOF. Partition the sequence of outcomes in two subsequences, at the point
where the event has occurred.
.o| FS...SF
S—
k
I T

Then in subsequence I, there is no success run of length & except possibly in
the beginning. Further let s; be the number of successes in the beginning of
subsequence I and sy (# k) be the number of successes in the end. Then s —s; —
sg — k successes are to be distributed in n — s — 3 places (generated by n — s~ 2
failures) such that at no place, a success run of length & occurs.

Let at r; places after failures, s — s; — s3 — k successes be placed in such a
manner that at least one success is placed at each cell and no cell gets k successes.
The number of ways of choosing r; places is ("‘;‘;3) and the number of ways of
placing successes is N(s — s3 — s9 — k —ry,my;~ (k — 1)). Hence (6.1). g

THEOREM 6.2. For initial trial a success and k > 1,

P{X(k’r) = n}
n—2r s—{(r—1)k-1s—s1—(r—1)k

S ('rL——s—rT—_lz—I[sz,O]) > 5

s=(r—1)k s1=0 $2=0
min{(r—1)(k—1),s—(r—1)k—s1—s2} min{n—-s—2(r—1).s3}

>< > > o)

s3=1 I'1:f53/(/\'—1)‘]
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min(r—1,s—r—s;—-s2—s3)

r—2
ro=1
P2
XM(S_Sl—32—33-—(7'—‘],)1{},7'27 )I[zo](p)

s1+sa+H(k—1)(r—=1) s—s1—s2~(k—=1)(r=1) r4ri+r2—2 n—s—r—r1—r2+2
XPy P9 4 g e

n—or e s—p—9 s—(r—1)k—1 s—s1—(r—1)k

S < o ) ) 3 (6.2)
s=(r—1)k 51=0 s2=1

(s2#k)

min{(r—1)(k~1).s—(r~1)k—s1—s2} min{n—s—2(r—1),s3} n—s—9% —1

X Z Z ( ™ )

s3=1 ri=[s3/(k-1)]

min(r—1,s—r—s1—s3—s3)

r—2
X Z ( ry )N(83—7’1,7‘1;Nk—1)

ro=1
XM (s —s1— sy — 83— (r—1)k,ro;1) I[m] <p2)
P

Xp-;l+52+(k—1)(7‘—1)—1p;*51—52'—(16—1)(7*1)-0-1

r+r1412—2 Nn—-§—-r—r;—rg2+2

Xy YD) >
where Ijg, 01 =1 1f sp =0; 0 otherwise, n > r(k +2).

PROOF. Again, in this case also, the sequence always ends with a pattern.
After forming r patterns, we have n — s — 2r failures, s — rk successes and r
patterns. Partition the sequence of outcomes at the point where the last event
has occurred.

In the remaining n — k — 2 trials, we have n — s — 2r failures, s — rk successes
and r — 1 patterns to be arranged in such a manner that after an independent
failure, a success run of length r should not appear. The number of ways in which

”_fj_l) as in case (ii) of

n — s — 2r failures and r patterns can be arranged is (
Theorem 5.1.
Consider subsequence 1. If the last trial is a failure. then the required proba-

bility is given by
n—2r n—s—7r—1 s—(r—=1)k s—(r—1)k—si min{n—s—2(r—1),s3}
> () ey )3

s=(r—1)k 51=0 s3=1 ri=[s3/(k—1)]
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9 min(r—1,s—r—s;—$3)
n—8—4ar
X g N(sg—ry.ris~k—1)
T1
ro=1
(6.3)

XM(s —s1 —s3— (r — 1)k, ry; l)pilHk_l)(r_Up;_sl_(k_l)(r_l)
xq11”+r1+r2—ZqS—sfrfrl—TQ-i-Q.

If the last trial is a success, then two cases arise:

(i) If the failure preceding the last run of successes is independent failure, then
s9 # k so the required probability is given by

n—2r n—s—p—9 s=(r—1k—-1 s—s;—(r—1)k
Y (TS X

s=(r—1 s1=0 s2=1
(s27k)
min{(r—1)(k—1),s—(r—1)k—s1—s2} min{n—s—2(r—1),s3} n—g—2r
x 5 > ()
s3=1 r1=[s3/(k—1)]

min(r—1,s—r—s1—s2—83)

X Z (T—2>N(53—r1,r1;~k‘—1) (6.4)

T
ro=1 2

XM(s — 81— sg =53 = (r = 1)k, ;1) I}, o) (i_i)

Xp.;l+sz+(k—1)(r—1)~1p;~sl—32—(k—1)(r—1)+1

r+ri+re—2 n—s—r—ry—ra+2
1 .

Xq qs

(ii) If the failure preceding the last run of successes belongs to a pattern, then
the required probability is given by

n—2r n—s—7—9 s—{r—1}k—1 s—s1—(r—1)k
S () 2%
s=(r—1)k s1=0 s9=1

min{(r—1)(k—1),s—(r—1)k—s1—s2} min{n—s—2(r—1),s3}

n—s—2r—1
X Z Z ( r1 )
s3=1 r1=[s3/(k—1)]

min(r—1,s—r—s;—s$>—s3)

x > ‘ <rf2>N(s;5—rl,r1;~k—1) (6.5)

T
7‘2:] 2

XM (s =51 =55 = 53— (1 = Dhora D (82‘)
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Xp.i1+5-g+(k-l)(r~l)~—1p;—51 —sy—(k=1){r—-1)+1

xq71"+r1+r2—2qg—s—r—r1—r2+2‘
Combining (6.3), (6.4) and (6.5), we get (6.2). 0

THEOREM 6.3. For initial trial a success and k > 1,

P{Y(k) = n}
n—2 s s§—s$p $—Sp—s1 min(s—so—s1—s2,n—s—3) (n -3
SIPINDY > Y
s=k sg=k s1=0 s2=0 r1=0
(s2<k) (66)
XN(s—spg—s1—1,r1;1,k=1) I[Iio] (1_)%) pi—n—l
RV 41
X (paq)1 gy T,

wheren=k+2k+3,...

THEOREM 6.4. For initial trial a success and k > 1,

P{y®n =n}
n—2r s $§—80 S5—50—S1
n—s—r—1-1
_ [52,0]
DD (A DS
s=(r—1)k so=k s1=0 s$2=0

min{(r—1){(k—1),s—so—s1—s2} min{n—s—2(r—1),s3}

y Z Z (n -5 ;12r - 1>

s3=1 ri=[ss/(k=1)]

r—2

min(r—1,8—89~51—852—53)
< T2

x D

ro=1

)N(‘SB)TI; 17k - 1)

XM(S — 89 — 81 — 83,79; 1) I[ILO] (I_)Q_> p§°+51+52p§_50_51“52

N
qu+r1+rz—2q;l*3—7"“7"l—7‘2+2 (6.7)
n-2r s n—s—r-—2 T !
253D S L I S S
s=(r—1)k so=k =0 5=l

(s2<h)
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min{(r—1)(k—1).s—sg—s1—s2} min{n-s—2(r—1),s3}

y Z Z (77,—5;127'— 1)

s3=1 r1=lsa/(k=1)]

T -2

79

min{r—1,s—sg—s1—s2—s3}
X <

)N(sl’n/"l;lak_ 1)

ro=1

XM (s~ s0~ 51— 82— s3,72:1) Iy ) (?2)

"N
so+s1+s2—1,_s—spg—s1—s2+1 _r+ri+r9o—2 n—s—r—ry—ro+2
Xpy Po 4 5 :

where n > r(k + 2).

Similarly the distributions of Z*) and Z*") can be derived.
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