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REGRESSION WITH CENSORED DATA BY LEAST
SQUARES SUPPORT VECTOR MACHINE

DaeHAK KIM!, JOOYONG SHIM! AND KWANGSIK OH!

ABSTRACT

In this paper we propose a prediction method on the regression model
with randomly censored observations of the training data set. The least
squares support vector machine regression is applied for the regression func-
tion prediction by incorporating the weights assessed upon each observation
in the optimization problem. Numerical examples are given to show the
performance of the proposed prediction method.
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1. INTRODUCTION

The least squares support vector machine (LS-SVM), a modified version of
support vector machine introduced by Vapnik (1995, 1998) in a least squares
sense, has been proposed for classification and regression by Suykens and Van-
dewalle (1999). In LS-SVM the solution is given by a linear system instead of a
quadratic program problem. The fact that LS-SVM has an explicit primal-dual
formulations has a number of advantages. Taking account of the fact that the
computational complexity increases strongly as the number of training data be-
comes larger, LS-SVM regression can be estimated efficiently for the huge data
set by using iterative methods.

The accelerated failure time model (AFT) and the least squares method to
accommodate the censored data seem appealing since they are familiar and well
understood. Koul et al. (1981) gave a simple least squares type estimation pro-
cedure in the censored regression model with the weighted observations and also
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showed the consistency and asymptotic normality of the estimator. Zhou (1992)
proposed an M-estimator of the regression parameter based on the censored data
using the weights Koul et al. (1981) proposed.

In this paper we obtain the predicted regression function by LS-SVM based
on the censored observations of the training data set. The similar weighting
scheme as Zhou (1992) used and the squared error loss function are included in
the optimization problem of LS-SVM. In Section 2 we give an overview of LS-
SVM regression. In Section 3 we suggest a prediction method on the regression
model with randomly censored data by LS-SVM with the weighting scheme as
Zhou (1992) used. Numerical studies with simulated data sets were performed in
Section 4. Finally, Section 5 has concluding remarks.

2. LEAST SQUARES SUPPORT VECTOR MACHINES

Let the training data set be denoted by {x;,y;},, with each input x; € R?
and the output y; € R. For this kind of data set, we can consider the two types of
regression, linear and nonlinear regression based on least squares support vector
machines. In this section we give an overview of LS-SVM regression for linear
and nonlinear cases, respectively.

2.1. Linear regression

For the case of well known linear regression, we can assume the functional
form of unknown regression function f for given input vector x by

fx)=wx+b (2.1)

where b is a bias term and w is an appropriate weight vector. The least squares
support vector approach to minimizing the guaranteed risk bound for linear model
leads to the optimization problem defined with a regularization parameter -y as

n
min %w'w + % Z; e2 (2.2)
over (w,b, e) subject to equality constraints
yi—wx;—b=¢, i=1,....,n (2.3)
where e = (e;,...,e,). The Lagrangian function can be constructed as

1 n n
Liw.b.e:a) = Ew’w+%ze? S ai(wxi+bbe—y) (2.4)

1=1 i=1
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where «;’s are the Lagrange multipliers. The conditions for optimality are given

by
aL

n
5;20 — W = E X,
1=1

% 0 — iaizo,
i=1

b

JL _

—— =0 = a=7e., t=1,...,n,

dei

oL .

Oa; =0 = W'Xz‘+b+ei—yi=0., 1=1,...,n

with solution

0o v b]  [o
Lol [2] -1 &

withy = (y1,...,9n), 1 =(1,...,1), a = (a1, ..., 0p) and 2 = {x,.x;}, K, =
1,...,n. Solving the linear equation (2.5) the estimators of the optimal bias and
Lagrange multipliers, b and @;’s can be obtained. And then the optimal regression

function for the given x is obtained as
flx) =" axix+b. (2.6)
i=1

2.2. Nonlinear regression

So far we have explained the case of linear regression, which is not always
appropriate for all tasks. To allow for the case of nonlinear regression, the input
vectors are nonlinearly transformed into a potentially higher dimensional feature
space by a nonlinear mapping function ¢ and then a linear regression is performed
there. Nonlinear regression function can be written as

F(x) = w'é(x) + b (2.7)

where b is a bias term, w is an appropriate weight vector and ¢(-) is a nonlinear
mapping function. The least squares support vector approach for nonlinear model
leads to the optimization problem defined with a regularization parameter 7y as

o1 5 o
min §w'w + 5 Z e? (2.8)

i=1
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over (w, b, e) subject to equality constraints
yi—W’gb(Xi)—b:ei, 1= 1,...,71. (2.9)

The Lagrangian function can be constructed as

n

1 n
L(w.be:a) = Ew'w +% E el — E ai{w'o(x;) +b+e —yi} (2.10)
1=1

i=1
where «;’s are the Lagrange multipliers. The conditions for optimality are given
by

oL =
%—:0 — w:;ai(ﬁ(xi),
oL -
%:0 — izzlai:(),
oL .
— =0 = ay=ve;, t=1,...,n,
Oe;
oL
=0 = wolx)+b+e -y =0, i=1,...,n.
da;

Thus for the case of nonlinear regression, the estimators of the optimal bias and
Lagrange multipliers can be obtained by solving the linear equation

0 1’ b 0
1 QN+’)'_II} [a] - ly] (2.11)

withy = (y1,--,un), 1=(1,..., 1), a=(a1,...,a,), and Qy = {Ky}, k.l =
1,2,...,n, where

Ky = ¢p(xx) d(x).-
For this nonlinear regression, solution of (2.11) requires the computations of dot
products ¢(xg) ¢(x;), k, I =1,...,n, in a potentially higher dimensional feature
space. Under certain conditions (Mercer, 1909), these demanding computations
can be reduced significantly by introducing a kernel function K such that

P(xk) P(x1) = K (x,%x1).

Several choices of kernel functions are possible. RBF (Radial Basis Function)
is the most frequently used kernel function. The optimal nonlinear regression

function for the given x is obtained as

o~

Fx) =" @K (x;,x) +b. (2.12)
=1
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The linear regression model (2.1) can be regarded as a special case of nonlinear
regression model (2.7). By using an identity feature mapping function ¢ in non-
linear regression model, that is, K(x;,x3) = x| x2, it reduces to linear regression
model.

3. REGRESSION WITH CENSORED DATA BY LS-SVM

In this section we suggest a prediction method on the regression model with
randomly censored data by LS-SVM. For the suggestion, we consider the cen-
sored linear regression model first and then extend the result of censored linear
regression model to censored nonlinear regression model.

Cousider the censored linear regression model (AFT model) for the response
variables T;’s,

T,=8'%xi+b+e, i=1,...,n,

where (B',b)' is the regression parameter vector of the model and €;’s are unob-
servable errors assumed to be independent with zero means and bounded vari-
ances. Let C;’s be the censoring variables assumed to be independent and iden-
tically distributed having a cumulative distribution function G(y) = P(C; < y).
The parameter vector of interest is (8',b)', and T; is not observed but

6 = Iity<cyy and Y = min(T;, C;),

where Iy denotes the indicator function. In most practical cases G(-) is not
known and needs to be estimated by the Kaplan-Meier estimator or its variation,
G (). The problem considered here is that of the estimation of (3',5) based on
(01,Y1,x1),...,{6n, Yn,x,). Koul et al. (1981) defined a new observable response
Y with weights (; as

(4

b;

Y7 =GYi re (= oy
; GY; where ( =G

(3.1)

and showed Y,* has the same mean as 7T; and thus follows the same linear model
as T; does. And the estimator of (8'.b) is obtained from
- n
(B.b) = argmin Y "(¥;" - B'x; — b)*.

(30y 5

Zhou (1992) proposed an M-estimator of the regression parameter with a gencral
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loss function p(-) using the weights (;,
o~ o~ "
(8,b) = afgm)inz Cip(Yi — B'x; — b).
/,b ' =1

We apply the weighting scheme (3.1) to (2.2) with squared error loss function.
Then we can construct the optimal problem

- L E <. 2
min ,3,3“{ i 162 (3 )

Since the second term in the equation (3.2) controls the empirical risk as Zhou
(1992) proposed with squared error loss function, we modify the equality con-
straints in (2.3) to

\/a(ﬁ;—ﬁ'xi—b) =e, t1=1,...,n.

Thus the estimators of the optimal bias and Lagrange multipliers, b and a;’s, can
be obtained from the linear equation

A R

\/f Q +y7| LY
where

y*:(\/ayl,..., Enyn)/, \/E:(:\/_E:,,..,\/a)l,az(al,...,an)'
and

1—G(y:)
with @() as an empirical distribution function of Y. Solving the above linear

equation the optimal bias and Lagrange multipliers, b and @;’s can be obtained.
And then the optimal linear regression function for given x is predicted as

fx)=Bx+b=3 \/Gaxix +b. (3.4)
i=1

For the censored nonlinear regression using kernel function and feature map-
ping function mentioned in Section 2.2 we can construct the optimal problem

.1 Y e
min iﬂ,ﬁ + 3 ;ef (3.5)
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with the equality constraints as

Ve{Yi—B'é(xi)—by =ei, i=1,..,n.

Thus the estimators of the optimal bias and Lagrange multipliers, b and a;’s, are
obtained by solving the following lincar equation

o e v] [o
Ve a4y [a]_[Y*] o

where

y*:(\/ayl,..., Enyn)l, \ﬁ\: (\/Z,...,\/Z\;)/,az(al,...,an)’
R’:{\/Z\: Z\lK(Xlwxl)}, a ———éi——-—, kil=1,...,n,

T1- G(y:)

and

with G (-) as an empirical distribution function of Y. Then the optimal nonlinear
regression function for given x is predicted as

ﬂﬂz}jV@&Ku¢w+8 (3.7)
=1

4. NUMERICAL STUDIES

We illustrate the performance of the proposed prediction method for the re-
gression function by LS-SVM using the weights defined in (3.1). The training
data sets were generated on the linear and the nonlinear regression model, re-
spectively, which include the censored observations.

For the censored linear regression model the response variables 73’s can be
expressed as

T, =Bzi+b+e, i=1,...,n. (4.1)

For the generation of data, we choose (3.b) = (1.1) without loss of generality.
Then the true value of the regression function of response variable given the
covariate x is f(z) = = + 1. For training data set, 200 of x’s are generated from
a uniform distribution. U(0,1), and 200 of (t,c)'s are generated from logistic
distributions. L(xz + 1,10) and L{z + 1 + cc. 10). respectively. where cc is chosen
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FIGURE 1 True regression functions given z’s and their predicted values for the linear regression

model.

for 20% censoring proportion. For the test data set, 200 of (z, ¢, c)’s are generated
by the same way as for the training data set. For the optimization problem in
(3.1), the value of regularization parameter ~ is chosen as 500 by the cross-
validation method with uncensored observations in the training data set. Solving
the linear equation (3.3) with the value of regularization parameter v chosen as
500, the estimators of the optimal Lagrange multipliers and bias, @;’s and /b\, can
be obtained. Then by the equation (3.4) the regression parameter estimators
are obtained as (BZ) = (1.0548,1.0020). Therefore we can write the predicted
regression function given z as

Flz) = 1.05487 + 1.0020.

In Figure 1 we represent the true regression functions (dotted line) and their pre-
dicted values (solid line), respectively. From this figure we can see the predicted
values look close to the true linear regression functions for z’s from the test data
set even though under 20% censorship.

The result shows that the proposed method works well. For the compari-
son of our proposed method with existing method, Zhou (1992)'s method were
considered. Zhou (1992) proposed an M-estimator of the regression parameter
with a general loss function. But for the comparison we used a squared error
loss function on the same data set. As a result we have a predicted regression
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FIGURE 2 True regression functions given t’s and their predicted values for the nonlinear regres-
siton model.

function given z by
F(x) = 1.0549z + 1.0019.

We cannot find a significant difference between the proposed method and Zhou
(1992)’s method in this linear regression model on the given data set.

Now consider the censored nonlinear regression model for the response vari-
ables 7;’s of the form,

T,j:f(;vi)+e,;, 1=1,...,n. (42)

For the training data set, 200 of z's are generated from a uniform distribution
U(0.1) and 200 of (£, ¢)’s are generated from the following normal distributions.

N(0.5 + 0.4sin(27z), 0.01) and N(0.5 + 0.4sin(27x) + ce, 0.01),

respectively. cc is chosen for 20% censoring proportion. 200 of (z,t,¢)’s are also
generated for the test data set. The radial basis function (RBF) kernel is used
for the numerical studies, which is defined as

1 .
K(xy.29) = exp {~§*U.—2(1171 - 11:2)2}-

The values of v and o in RBF kernel are chosen as 500 and 0.2, respectively, by

the cross-validation method with uncensored observations in the training data
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set. Solving the linear equation (3.6) with the training data set. the estimators
of the optimal Lagrange multipliers and bias, @;’s and b, can be obtained. Then
by the equation (3.7) the predicted regression function given z in the test data
set is obtained. Figure 2 shows true regression functions (dotted line) and their
predicted values (solid line), respectively. The predicted values look close to the
true regression functions in this nonlinear model as in linear model for z’s from
the test data set even though under 20% censorship. For the case of nonlinear
regression model, it is hard to find a regression method on the censored data set
to compare with the proposed method.

5. CONCLUDING REMARKS

Through the numerical studies, we showed that the proposed prediction
method by LS-SVM provides a satisfying solutions to the censored linear regres-
sion model and the censored nonlinear regression model respectively. Particularly
for the censored nonlinear regression model, the proposed method can be used
without heavy computations and shows a satisfying result. In future work, we
intend to devise algorithms for predicting intervals of regression parameter based
on the training data set which might be randomly censored, by using LS-SVM
or the other efficient machine learning methods.
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