Phase Transition and ionic Conductivity of Cesium Hydrogen Sulfate-PAN Composites

황산수소 세슘-PAN 복합체의 상전이와 이온 전도성

  • 최병구 (단국대학교 응용물리학과) ;
  • 박상희 (단국대학교 응용물리학과)
  • Published : 2004.03.01

Abstract

The cesium hydrogen sulfate (CsHSO$_4$) crystal is a superprotonic conductor above 140$^{\circ}C$ and possesses protonic conductivity three to low orders of magnitude higher than that at room temperature. Recently, the possibility of it as an electrolyte material for fuel cell system draws much attention. However, its plasticity and absorption of humidity place a limitation on its application. In this study, composites consisting of CsHSO$_4$ and polyacrylonitrile were prepared, and their phase transition properties and the ionic conductivities were evaluated. When the content of CsHSO$_4$ was about 80 vol%, a mechanically strong film with the protonic conductivity of 1${\times}$10$\^$-3/ Scm$\^$-1/ were made.

황산수소 세슘(CsHSO$_4$) 결정은 14$0^{\circ}C$ 이상의 온도에서 상온보다 $10^3$-$10^4$배 높은 양성자 전도성을 나타내는 초양성자 전도성 물질로서, 최근 연료 전지 분리막으로의 응용성이 크게 부각되고 있다. 그러나 연성과 흡습성 때문에 그 응용성에 한계가 있다. 본 연구에서는 기계적 물성이 우수한 얇은 전해질 막을 얻기 위하여 황산수소 세슘과 폴리아크릴로나이트릴 고분자와의 복합체를 제조하고 복합체의 이온 전도성과 상전이 현상을 조사하였다. 황산수소 세슘의 함량이 80 vol% 정도 되면 분리막으로 응용가능 한 전도도인 1${\times}$$10^{-3}$S$cm^{-1}$ /에 이르고 기계적 물성이 우수한 얇은 막으로 합성할 수 있었다.

Keywords

References

  1. Mat. Res. Bull. v.29 M.M.Abdel-Kader;A.El-Shawarby;W.M.Housny;Z.H.El-Tanahy;F.El-Kabbany https://doi.org/10.1016/0025-5408(94)90029-9
  2. Nature v.410 S.M.Haile;D.A.Boysen;C.R.I.Chisholm;R.B.Merle https://doi.org/10.1038/35073536
  3. Nature v.410 T.Norby https://doi.org/10.1038/35073718
  4. J. Phys. Soc. Japan v.50 M.Komukae;T.Osaka;Y.Makita;T.Ozaki;K.Itoh;E.Nakamura https://doi.org/10.1143/JPSJ.50.3187
  5. JETP Lett. v.36 A.I.Baranov;L.A.Shuvalov;N.M.Shchagina
  6. Solid State Commun. v.55 M.Pham-Thi;Ph.Colomban;A.Novak;R.Blinc https://doi.org/10.1016/0038-1098(85)90605-2
  7. JETP Lett. v.44 A.I.Baranov;V.V.Sinitsyn;E.G.Ponyatovskii;L.A.Shuvalov
  8. Solid State Ionics v.24 Ph.Colomban;M.Pham-Thi;A.Novak https://doi.org/10.1016/0167-2738(87)90160-3
  9. Solid State Ionics v.35 M.Friesel;A.Lunden;B.Baranowski https://doi.org/10.1016/0167-2738(89)90017-9
  10. Ferroelectrics v.124 A.Luden;B.Baranowski;M.Friesel https://doi.org/10.1080/00150199108209422
  11. Sov. Phys. JETP v.73 V.V.Synistyn;E.G.Ponyatovskii;A.I.Baranov;A.V.Tregubshenko;L.A.Schvalov
  12. Solid State Ionics v.97 L.Kirpichnikova;M.Polomska;J.Wolak;B.Hilczer https://doi.org/10.1016/S0167-2738(97)00071-4
  13. Mat. Res. Bull. v.35 C.R.I.Chisholm;S.M.Haile https://doi.org/10.1016/S0025-5408(00)00301-9
  14. J. Mol. Structure v.614 J.Baran;M.K.Marchewka https://doi.org/10.1016/S0022-2860(02)00233-8
  15. JETP Lett. v.62 L.F.Kirpichnikova;A.A.Urusovskaya;V.I.Mozgovoi
  16. Cyrstal. Rep. v.43 A.A.Urusovskaya;L.F.Kirpichnikova
  17. Solid State Ionics v.136-137 C.R.I.Chisholm;S.M.Haile https://doi.org/10.1016/S0167-2738(00)00315-5
  18. J. Phys. Chem. Solids v.62 S.Bouattour;T.Mhiri;A.W.Kolsi;F.Romain;J.Jaud https://doi.org/10.1016/S0022-3697(01)00040-3
  19. Solid State Ionics v.90 V.G.Ponomareva;N.F.Uvarov;G.V.Lavrova;E.F.Hairetdinov https://doi.org/10.1016/S0167-2738(96)00410-9
  20. Solid State Ionics v.145 V.G.POnomareva;G.V.Lavrova https://doi.org/10.1016/S0167-2738(01)00957-2
  21. Polymer(Korea) v.22 Y.J.Lee;B.K.Choi
  22. Impedance Spectroscopy J.R.Macdonald
  23. Phys. Rev. B v.56 J.Wu;D.S.McLachlan https://doi.org/10.1103/PhysRevB.56.1236
  24. The Physics of Amorphous Solids R.Zallen