Two Critical Aggregation Concentrations in Interaction of Poly(diallyldimethylammonium chloride) with Anionic Surfactant Sodium Dodecyl Sulfate

폴리(디알릴디메틸암모늄 클로라이드)와 음이온 계면활성제 도데실 황산 소듐의 상호작용에 따른 두 종류의 임계 응집 농도

  • 김용철 (금오공과대학교 고분자공학과) ;
  • 박일현 (금오공과대학교 고분자공학과) ;
  • 양경모 (금오공과대학교 고분자공학과) ;
  • 조동환 (금오공과대학교 고분자공학과)
  • Published : 2004.03.01

Abstract

The interaction between poly(diallyldimethylammonium chloride) (PDADMAC) of positive charge per repeating unit and anionic surfactant, sodium dodecyl sulfate (SDS) has been investigated by light scattering, turbidimetry and fluorescence. Chain behavior of PDADMAC in 0.3 M NaCl aqueous solution seems like neutral polymer chain In good solvent. By adding SDS into PDADMAC solution, strong attractive interaction develops between them, and can be described with two kinds of critical aggregation concentration(CAC). First, at [SDS]/]DADMAC] 0.06, intramolecular critical micellization of SDS occurs inside a single polymer chain. The maximum size of SDS-polymer complex is observed just before intramolecular CAC. Above intramolecular CAC, the size of this complex starts to shrink slowly due to involvement of polymer subchain in micelle. Second, intermolecular CAC is also observed at [SDS]/[DADMAC] 0.5 by means of turbidimetry. Strong aggregation of polymer chains decorated with many micelles occurs after the second CAC, and huge aggregates have formed.

반복 단위마다 양전하를 띄고 있는 폴리(디알릴디메틸암모늄 클로라이드) (PDADMAC)와 음이온 계면활성제인 도데실 황산 소듐 (SDS)와의 상호작용을 광산란법, 탁도법 및 형광법을 이용하여 조사하였다. 0.3 M NaCl 수용액에서의 PDADMAC는 마치 좋은 용매에서 팽창되어 있는 중성 고분자처럼 존재하나, SDS를 첨가함에 따라 이들 사이의 상호작용은 두 개의 임계 응집 농도로써 기술할 수 있었다. 첫 번째, 사슬 내 임계 응집 농도에서는 하나의 고분자 사슬 내에서 SDS의 마이셀화 과정으로써 [SDS]/[DADMAC] 0.06 정도에서 일어나며, 이 복합체 크기는 오히려 마이셀 형성되기 직전에 최대 값을 나타내고, 마이셀이 형성된 후부터는 일부 고분자 사슬도 마이셀 형성에 참여하기 때문에 SDS 첨가에 따라 점차로 수축되기 시작하였다. 두 번째, 사슬간 임계 응집 농도는 탁도 법에 의해 [SDS]/[DADMAC] 0.5에서 측정되었고, 이 두 번째 임계 응집농도 이상에서는 많은 마이셀들로 장식된 고분자 사슬들 사이의 응집화에 의한 거대한 응집체가 형성된다.

Keywords

References

  1. Macromolecules v.23 A.J.Dualeh;C.A.Steiner https://doi.org/10.1021/ma00203a043
  2. Eur. Polym. J. v.37 X.Zheng;W.Cao https://doi.org/10.1016/S0014-3057(01)00111-2
  3. Tanpaku shitu, Kakusan, Koso (Protein, Nucleic Acid, Enzyme, in Japanese) v.21 T.Takagi;K.Shirahama;K.Tsujii;K.Kubo
  4. J. Physique v.43 B.Cabane;R.Duplessix https://doi.org/10.1051/jphys:0198200430100152900
  5. J. Physique v.48 B.Cabane;R.Duplessix https://doi.org/10.1051/jphys:01987004804065100
  6. Macromolecules v.27 J.Fundin;W.Brown https://doi.org/10.1021/ma00096a026
  7. Macromolecules v.31 D.P.Norwood;E.Minatti;W.F.Reed https://doi.org/10.1021/ma971318n
  8. Macromolecules v.31 D.P.Norwood;E.Minatti;W.F.Reed https://doi.org/10.1021/ma971319f
  9. Polymer(Korea) Y.C.Kim;I.H.Park;H.S.Sim;E.J.Choi
  10. J. Photochem. Photobiol. A v.147 M.Wolszcrak;J.Miller https://doi.org/10.1016/S1010-6030(01)00611-6
  11. Methods of X-ray and Neutron Scattering in Polymer Science R.J.Roe
  12. Dynamic Light Scatteing; The Method and Some Applications M.Schmidt;W.Brown(ed.)
  13. Relaxation Phenomena in Polymers S.Matsuoka
  14. Light Scattering from Polymer Solution Light Scattering from Polyelectrolyte Solutions M.Nagasawa;A.Takahashi;M.D.Huglin(ed.)
  15. Surface, Interfaces, and Colloids: Principles and Applications(2nd Ed.) D.Myers
  16. Surfactants and Polymers in Aqueous Solution B.Jonsson;B.Lindman;K.Holmberg;B.Kronberg
  17. Macromolecules v.24 S.W.Park;T.Chang;I.H.Park https://doi.org/10.1021/ma00020a038
  18. J. Am. Chem. Soc. v.99 K.Kalyanssundaran;J.K.Thomas https://doi.org/10.1021/ja00449a004
  19. Adv. Colloid Interf. Sci. v.97 I.Capek https://doi.org/10.1016/S0001-8686(01)00049-5
  20. Macromolecules v.24 J.Ringsdorf;J.Venzmer;F.M.Winnik https://doi.org/10.1021/ma00007a034
  21. Macromolecules v.31 E.E.Makhaeve;H.Tenhu;A.R.Khokhlov https://doi.org/10.1021/ma980158s