The Beneficial Effect of Trolox on Sepsis-Induced Hepatic Drug Metabolizing Dysfunction

  • 발행 : 2004.02.01

초록

Trolox is a hydrophilic analogue of vitamin E. The aim of this study was to investigate its effects on hepatic injury, especially alteration in cytochrome P450 (CYP)-dependent drug metabolism during polymicrobial sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). The rats were treated intravenously with Trolox (2.5 mg/kg) or vehicle, immediately after CLP. Serum aminotransferases and lipid peroxidation levels were markedly increased 24 h after CLP. This increase was attenuated by Trolox. Total CYP content and NADPH-P450 reductase activity decreased significantly 24 h after CLP. This decrease in CYP content was attenuated by Trolox. At 24 h after CLP, there was a significant decrease in the activity of these CYP isozymes: CYP1A1, 1A2, 2B1, and 2E1. However, Trolox differentially inhibited the decrease in CYP isozyme activity. Trolox had little effect on the decrease in CYP1A1 activity but Trolox significantly attenuated decreases in CYP1A2 and 2E1 activities. In fact, Trolox restored CYP2B1 activity to the level of activity found in control rats. Our findings suggest that Trolox reduces hepatocellular damage as indicated by abnormalities in hepatic drug-metabolizing function during sepsis. Our data also indicates that this protection is, in part, caused by decreased lipid peroxidation.

키워드

참고문헌

  1. Adel, A. K., Tarek, K. M., Mohamed, Z. G., and Hanan, M. A., Protective effect of vitamin E, $\beta$-carotene and N-acetylcys-teine from the brain oxidative stress induced in rats by lipopolysaccharide. Int. J. Biochem. Cell Biol., 33, 475-482 (2001) https://doi.org/10.1016/S1357-2725(01)00032-2
  2. Barkley, L. R. C., Locke, S. J., and Mac-Neil, J. M., Autooxidant in micelles: synergism of vitamin C with lipid-soluble vitamin E and water-soluble Trolox. Can. J. Chem., 63, 366-374 (1985) https://doi.org/10.1139/v85-062
  3. Barriere, S. L. and Lowry, S. F., An overview of mortality risk prediction in sepsis. Crit. Care Med., 23, 376-393 (1995) https://doi.org/10.1097/00003246-199502000-00026
  4. Baue, A. E., Multiple organ failure, multiple organ dysfunction, and the systemic inflammatory response syndrome: where do we stand? Shock, 2, 385-397 (1994) https://doi.org/10.1097/00024382-199412000-00001
  5. Baveja, R., Kresge, N., Ashburn, J. H., Keller, S., Yokoyama,Y, Sonin, N., Zhang, J. X., Huynh, T., and Clemens, M. G., Potentiated hepatic microcirculatory response to endothelin-1 during polymicrobial sepsis. Shock, 18, 415-422 (2002) https://doi.org/10.1097/00024382-200211000-00005
  6. Buege, T. A. and Aust S. D., Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  7. Burke, M. D., Thompson, S., Elcombe, C. R., Halpert, J., Haparanta, T., and Mayer, R. T., Ethoxy-, pentoxy-, and benzyloxyphenoxazones and homologues: a series of sub-strates to distinguish between different induced cytochromes P-450. Biochem. Biopharmacol., 34, 3337-3345 (1985) https://doi.org/10.1016/0006-2952(85)90355-7
  8. Castle, L. and Perkins, M. J., Inhibition kinetics of chain-breaking phenolic antioxidants in SDS micelles: evidence that intermicellar diffusion rates may be rate-limiting for hydrophobic inhibitors such as alpha-tocopherol. J. Am. Chem. Soc., 108, 6381-6382 (1986) https://doi.org/10.1021/ja00280a041
  9. Chaudry, I. H., Wichterman, K. A., and Baue, A. E., Effect of sepsis on tissue on tissue adenine nucleotide levels. Surgery, 85, 205-211 (1979)
  10. Daly, A. K., Molecular basis of polymorphic drug metabolism. J. Mol. Med., 73, 539-553 (1995)
  11. Dhainaut, J. F., Marin, N., Mignon, A., and Vinsonneau, C., Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit. Care Med., 29 (7 Suppl), S42-S47 (2001) https://doi.org/10.1097/00003246-200107001-00016
  12. Doba, T., Burton G. W., and Ingold, K. U., Antioxidant and co-antioxidant activity of vitamin C: the effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochem. Biophys. Act., 835, 298-303 (1985) https://doi.org/10.1016/0005-2760(85)90285-1
  13. Goode, H. F., Cowley, H. C., Walker, B. E., Howdle, P. D., and Webster, N. R., Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit. Care Med., 23, 646-651 (1995) https://doi.org/10.1097/00003246-199504000-00011
  14. Guengerich, F. P., Dannan, G. A., Wright, S. T, Martin, M. V., and Kaminsky, L. S., Purification and characterization of microsomal cytochrome P-450s. Xenobiotica, 12, 701-716 (1982) https://doi.org/10.3109/00498258209038945
  15. Hong, J. Y., Pan, J. M., Gonzalez, F. J., Gelboin, H. V., and Yang, C. S., The induction of a specific form of P-450 (P-450j) by fasting. Biochem. Biophys. Res. Commun., 142, 1077-1083 (1987) https://doi.org/10.1016/0006-291X(87)91525-7
  16. Horton, J. W., Free radical and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology, 189, 75-88 (2003) https://doi.org/10.1016/S0300-483X(03)00154-9
  17. Huet, P. M. and Villenueve, J. P., Determinations of drug disposition in patients with cirrhosis. Hepatology, 3, 913-918 (1983) https://doi.org/10.1002/hep.1840030604
  18. Ingold, K. U., Webb, A. C., Witter, D., Burton, G. W., Metcalfe, T. A., and Muller D. P., Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch. Biochem. Biophys., 259, 224-225 (1987) https://doi.org/10.1016/0003-9861(87)90489-9
  19. Karima, R., Matsumoto, S., Higashi, H., and Matsushima, K., The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today, 5,123-132 (1999) https://doi.org/10.1016/S1357-4310(98)01430-0
  20. Koichi, H., Shinichiro, I., Toshio, H., Toshihiro, M., Tomohisa, F., Tadashi, K., Fumitake, H., and Mitsuhiro, M., Sepsis and cholestasis: basic findings in the sinusoid and bile can-aliculus. J. Hepatobiliary Pancreat. Surg., 8, 20-26 (2001) https://doi.org/10.1007/s005340170047
  21. Kokwaro, G. O., Glazier,A. P., Ward, S. A., Breckenridge,A. M., and Edwards, G., Effect of malaria infection and endotoxin-induced fever on phenacetin O-deethylation by rat liver microsomes. Biochem. Pharmacal., 45, 1235-1241 (1993) https://doi.org/10.1016/0006-2952(93)90275-2
  22. Lee, S.-M. and Cho, T.-S., Effect of Trolox on hypoxia/ reoxygenation-induced injury is isolated perfused rat liver. Arch. Pharm. Res., 20, 471-475 (1997) https://doi.org/10.1007/BF02973942
  23. Lee, S.-M., Park, M.-J., Cho, T-S., and Clemens, M.-G., Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock, 13, 279-284 (2000) https://doi.org/10.1097/00024382-200004000-00005
  24. Marubayasch, S., Dohi, K., Ochi, K., and Kawasaki, T., Role of free radicals in ischemic rat liver cell injury. Prevention of damage by $\alpha$-tocopherol administration. Surgery, 99, 184-192 (1986)
  25. Nieto, N., Friedman, S. L., and Cederbaum, A. I., Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology, 35, 62-73 (2002) https://doi.org/10.1053/jhep.2002.30362
  26. Omura, T. and Sato, R., The carbon monoxide binding pigment of liver microsomes. J. Biol. Chem., 239, 2370-2379 (1964)
  27. Parke, D. V. and Sapota, A., Chemical toxicity and reactive oxygen species. Int. J. Occup. Med. Environ. Health, 4, 331-340 (1996)
  28. Parrillo, J. E., Parker, M. M., Natanson, C., Suffredini, A. F., Danner, R. L., Cunnion, R. E., and Ognibene, F. P., Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann. Int. Med., 113, 227-242 (1990) https://doi.org/10.7326/0003-4819-113-3-227
  29. Porter, T. D. and Coon, M. J., Cytochrome P-450: multiplicity of isoforms, substrates, and catalytic and regulatory mecha-nisms. J. Biol. Chem., 266, 13469-13472 (1991)
  30. Ring, A. and Stremmel, W., The hepatic microvascular re-sponses to sepsis. Semin. Thromb. Hemost., 26, 589-594 (2000) https://doi.org/10.1055/s-2000-13215
  31. Schenkman, J. B., Remmer, H., and Estabrook, R. W., Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol., 3, 113-123 (1967)
  32. Szabo, G., Romics, L. Jr., and Frendl, G., Liver in sepsis and systemic inflammatory response syndrome. Clin. Liver Dis., 6, 1045-1066, (2002) https://doi.org/10.1016/S1089-3261(02)00058-2
  33. Topfer, F., Lenton, L. M., Bygrave, F. L., and Behm, C. A., Importance of T-cell-dependent inflammatory reactions in the decline of microsomal cytochrome P450 concentration in the livers of rats infected with Fasciola hepatica. Int. J. Parasitol., 25, 1259-1262 (1995) https://doi.org/10.1016/0020-7519(95)00052-4
  34. Varda, B., Liat, L., Abraham, N., Yehuda, Z., Margalit, B., and Shlomo, G., The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol. Lett., 123, 1-10 (2001)
  35. Vermillion, J. and Coon, M. J., Purified liver microsomal NADPH-cytochrome P-450 reductase. J. Biol. Chem., 253, 8812-8819 (1978).
  36. Wu, T. -W., Hashimoto, N., Au, J. -X, Wu, J., Mickle, D. A., and Carey, D., Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury. Hepatology, 13, 575-580 (1991) https://doi.org/10.1002/hep.1840130328
  37. Wu, T. -W., Hashimoto, N., Wu, J., Carey, D., Li, R. -K., Mickle, D., and Wiesel, R. D., The cytoprotective effect of Trolox demonstrated with three types of human cells. Biochem. Cell Biol., 68, 1189-1194 (1990) https://doi.org/10.1139/o90-176