Effect of Trolox on Altered Vasoregulatory Gene Expression in Hepatic Ischemia/Reperfusion

  • Published : 2004.02.01

Abstract

This study was designed to investigate the effect of Trolox, a hydrophilic analogue of vitamin E, on the alteration of vasoregulatory gene expression during hepatic ischemia and reperfusion (I/R). Rats were subjected to 60 min of hepatic ischemia in vivo. The rats were treated intravenously with Trolox (2.5 mg/kg) or the vehicle as a control 5 min before reperfusion. Liver samples were obtained 5 h after reperfusion for a RT-PCR analysis on the mRNA for the genes of interest. These mRNA peptides are endothelin-1 (ET -1), potent vasoconstrictor peptide, its receptor $ET_A$ and $ET_B$, vasodilator endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and cyclooxygenase-2 (COX-2). It was seen that serum alanine aminotransferase and lipid peroxi-dation levels were markedly increased after I/R and Trolox significantly suppressed this increase. In contrast, the glutathione concentration decreased in the I/R group, and this decrease was inhibited by Trolox. ET-1 mRNA expression was increased by I/R, an increase which was prevented by Trolox. The mRNA levels for $ET_A$ receptor was significantly decreased, whereas ET$_{B}$ receptor transcript increased in the I/R group. The increase in $ET_A$ was prevented by Trolox. The mRNA levels for iNOS and HO-1 significantly increased in the I/R group and Trolox attenuated this increase. There were no significant differences in eNOS mRNA expression among any of the experimental groups. The mRNA levels for COX-2 and TNF-$\alpha$ significantly increased in I/R group and Trolox also attenuated this increase. Our findings suggest that I/R induces an imbalanced hepatic vasoregulatory gene expression and Trolox ameliorates this change through its free radical scavenging activity.y.

Keywords

References

  1. Atalla, S. L., Toledo-Pereyra, L. H., MacKenzie, G. H., and Cederna, J. P., Influence of oxygen-derived free radical scavengers on ischemic livers. Transplantation, 40, 584-590 (1985) https://doi.org/10.1097/00007890-198512000-00002
  2. Baud, L., Fouqueray, B., Philippe, C., and Ardaillou, R., Reactive oxygen species as glomerular autacoids. J. Am. Soc. Nephrol., 2, S132-S138 (1992)
  3. Bauer, I., Wanner, G. A., Rensing, H., Alte, C., Miescher, E. A., Wolf, B., Pannen, B. H., Clemens, M. G., and Bauer, M., Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology, 27, 829-838 (1998) https://doi.org/10.1002/hep.510270327
  4. Brehe, J. E. and Burch, H. B., Enzymatic assay for glutathione. Anal. Biochem., 74, 189-197 (1978) https://doi.org/10.1016/0003-2697(76)90323-7
  5. Bromont, C., Marie, C., and Bralet, J., Increased lipid peroxida-tion in vulnerable brain regions after transient forebrain ischemia in rat. Stroke, 20, 918-924(1989) https://doi.org/10.1161/01.STR.20.7.918
  6. Brunner, F. and Opie, L. H., Role of endothelin-A receptors in ischemic contracture and reperfusion injury. Circulation, 97, 391-398(1998) https://doi.org/10.1161/01.CIR.97.4.391
  7. Bryan, C. L., Patefield, A. J., Cohen, D., Nielsen, J. L., Emanual, B., and Calhoon, J. H., Assessment of injury in transplanted and non-transplanted lungs after 6 h of cold storage with glutathione. J. Appl. Physiol., 67, 1231-1241 (1994)
  8. Buege, T. A. and Aust S. D., Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310 (1978) https://doi.org/10.1016/S0076-6879(78)52032-6
  9. Chun, K., Zhang J., Biewer, J. E., Ferguson, D., and Clemens, M. G., Microcirculatory failure determines lethal hepatocyte injury in ischemia/reperfused rat livers. Shock, 1, 3-9 (1994)
  10. Clemens, M. G., Bauer, M., Gingalewski, C., Miescher, E., and Zhang, J. X., Hepatic intercellular communication in shock and inflammation. Shock, 2, 1-9 (1994) https://doi.org/10.1097/00024382-199407000-00001
  11. Clemens, M. G., Bauer, M., Pannen, B. H,. Bauer, I., and Zhang, J. X., Remodeling of hepatic microvascular responsiveness after ischemia/reperfusion. Shock, 8, 80-85 (1997) https://doi.org/10.1097/00024382-199708000-00002
  12. Colletti, L. M., Remick, D. G., Burtch, G. D., Kunkel, S. L., Strieter, R. M., and Campbell, D. A. Jr., Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J. Clin. Invest., 85, 1936-1943 (1990) https://doi.org/10.1172/JCI114656
  13. Fan, C., Zwacka, R. M., and Engelhardt, J. F., Therapeutic approaches for ischemia/reperfusion injury in the liver. J. Mol. Med., 77, 577-592 (1999) https://doi.org/10.1007/s001099900029
  14. Ferrari, R., Oxygen-free radicals at myocardial level: effects of ischaemia and reperfusion. Adv. Exp. Med. Biol., 366, 99-111 (1994) https://doi.org/10.1007/978-1-4615-1833-4_8
  15. Goda, N., Suzuki, K., Naito, M., Takeoka, S., Tsuchida, E., Ishimura, Y., Tamatani, T., and Suematsu, M., Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J. Clin. Invest., 101, 604-612 (1998) https://doi.org/10.1172/JCI1324
  16. Hayashi, H., Chaudry, I. H., Clemens, M. G., and Baue, A. E., Hepatic ischemia models for determining the effects of ATP-$MgCl_{2}$ treatment. J. Surg. Res., 40, 167-175 (1986) https://doi.org/10.1016/0022-4804(86)90119-8
  17. Horie, Y., Wolf, R., Russell, J., Shanley, T. P., and Granger, D. N., Role of Kupffer cells in gut ischemia/reperfusion-induced hepatic microvascular dysfunction in mice. Hepatology, 26, 1499-1505 (1997) https://doi.org/10.1002/hep.510260617
  18. Jin, M. B., Zhu, Y., Zhang, S., Ishizaki, N., Tanaka, H., Subbotin, V. M., Lee, R. G, Starzl, T. E., and Todo, S., Attenuation of ischemic liver injury by a non-selective endothelin receptor antagonist. Transplant. Proc., 29, 1335 (1997) https://doi.org/10.1016/S0041-1345(96)00582-9
  19. Kawase, T., Kato, S., and Lieber, C. S., Lipid peroxidation and antioxidant defense systems in rat liver after chronic ethanol feeding. Hepatology, 10, 815-821 (1989) https://doi.org/10.1002/hep.1840100511
  20. Krause, S. M., Walsh, T. F., Greenlee, W. J., Ranaei, R., Williams, D. L. Jr., and Kivlighn, S. D., Renal protection by a dual $ET_{A}$/$ET_{B}$ endothelin antagonist, L-754, 142, after aortic cross-clamping in the dog. J. Am. Soc. Nephrol., 8, 1061-1071 (1997)
  21. Lee, S. M., Park, M. J., Cho, T. S., and Clemens, M. G., Hepatic injury and lipid peroxidation during ischemia and reperfusion. Shock, 13, 279-284 (2000) https://doi.org/10.1097/00024382-200004000-00005
  22. Lopez, O. S., Hernandez, P. O., Navarro, A. J., Perez, L. G, Rodriguez, P. M., Lamas, S., and Rodriguez, P. D., Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells. Br. J Pharmacol., 124, 447-454 (1998) https://doi.org/10.1038/sj.bjp.0701847
  23. Muller, T. B., Haraldseth, O., Jones, R. A., Sebastiani, G., Godtliebsen, F., Lindboe, C. F., and Unsgard, G., Combined perfusion and diffusion-weighted magnetic resonance imaging in a rat model of reversible middle cerebral artery occlusion. 231 Stroke, 26, 451-457 (1995) https://doi.org/10.1161/01.STR.26.3.451
  24. Nevalainen, T. J., Arminger, L. C., and Gavin, J. B., Effects of ischaemia on vasculature. J. Mol. Cell Cardiol., 18, 7-10 (1986)
  25. Pannen, B. H., AI-Adili, F., Bauer, M., Clemens, M. G., and Geiger, K. K., Role of endothelins and nitric oxide in hepatic reperfusion injury in the rat. Hepatology, 27, 755-764 (1998) https://doi.org/10.1002/hep.510270317
  26. Pannen, B. H., Bauer, M., Zhang, J., Robotham, J. L., and Clemens, M. G., A time-dependent balance between endothelins and nitric oxide regulating portal resistance after endotoxin. Am. J Physiol., 271, 1953-1961 (1996)
  27. Petty, M., Grisar, J. M., Dow, J., and Jong, W. D., Effects of an alpha-tocopherol analogue on myocardial ischemia and reperfusion injury in rats. Eur. J. Pharmacal., 179, 241-242 (1990) https://doi.org/10.1016/0014-2999(90)90427-8
  28. Prasad, K., Lee, P., and Kalra, J., Influence of endothelin on cardiovascular function, oxygen free radicals, and blood chemistry. Am. Heart J., 121, 178-187 (1991) https://doi.org/10.1016/0002-8703(91)90971-J
  29. Rensing, H., Bauer, I., Zhang, J. X., Paxian, M., Pannen, B. H., Yokoyama, Y., Clemens, M. G., and Bauer, M., Endothelin-1 and heme oxygenase-1 as modulators of sinusoidal tone in the stress-exposed rat liver. Hepatology, 36, 1453-1465 (2002)
  30. Sonin, N. V., Garcia-Pagan, J. C., Nakanishi, K., Zhang, J. X., and Clemens, M. G., Patterns of vasoregulatory gene expression in the liver response to ischemia/reperfusion and endotoxemia. Shock, 11, 175-179 (1999) https://doi.org/10.1097/00024382-199903000-00004
  31. Suematsu, M., Wakabayashi, Y., and Ishimura, Y., Gaseous monoxides: a new class of microvascular regulator in the liver. Cardiovasc. Res., 32, 679-686 (1996)
  32. Watanabe, T., Suzuki, N., Shimamoto, N., Fujino, M., and Imada, A., Contribution of endogenous endothelin to the extension of myocardial infarct size in rats. Circ. Res., 69, 370-377 (1991) https://doi.org/10.1161/01.RES.69.2.370
  33. Wu, T. W., Hashimoto, N., Au, J. X., Wu, J., Mickle, D. A, and Carey, D. Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury. Hepatology, 13, 575-580 (1991) https://doi.org/10.1002/hep.1840130328
  34. Yokoyama, Y., Baveja, R., Kresge, N., Sonin, N., Nakanishi, K., Zhang, J. X., Gitzelmann, C. A., and Clemens, M. G., Endothelin receptor remodeling induces the portal venous hyper-response to endothelin-1 following endotoxin pretreat-ment. Shock, 17, 36-40 (2002) https://doi.org/10.1097/00024382-200201000-00007
  35. Zhang, J. X., Pegoli, W., and Clemens, M. G., Endothelin-1 induces direct constriction of hepatic sinusoids. Am. J. Physiol., 266, 624-632 (1994)