Phenolic Compounds Obtained from Stems of Couepia ulei with the Potential to Induce Quinone Reductase

  • Jang, Dae-Sik (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois) ;
  • Park, Eun-Jung (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois) ;
  • Kang, Young-Hwa (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois) ;
  • Vigo, Jose-Schunke (Instituto Nacional de Medicina Tradicional (INMETRA)) ;
  • James-G.Graham (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois) ;
  • Fernando-Cabieses (Instituto Nacional de Medicina Tradicional (INMETRA)) ;
  • Harry-H.S.Fong (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois) ;
  • John-M.Pezzuto (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Heine Pharmacy building, Purdue University) ;
  • A.Douglas-Kinghorn (Program for Collaborative Research in the Pharmaceutical Sciences and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois)
  • Published : 2004.02.01

Abstract

Activity-guided fractionation of the EtOAc-soluble extract of the stems of Couepia ulei, using a bioassay based on the induction of quinone reductase (QR) in cultured Hepa 1c1c7 mouse hepatoma cells led to the isolation of two active compounds, a new natural product, erythro-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-ethoxypropan-1-o1 (1), and a known compound, evofolin-B (2), along with five inactive compounds all of known structure, viz., betulinic acid, oleanolic acid, pomolic acid, ($\pm$)-syringaresinol, and ursolic acid. These isolates were identified by analysis of physical and spectral data. Compounds 1 and 2 exhibited QR inducing activity, with observed CD (concentration required to double induction) values of 16.7 and 16.4 $\mu\textrm{M}$, respectively.

Keywords

References

  1. Bhakuni, R. S., Shukla, Y. N., and Thakur, R. S., New triterpenoid and aliphatic esters from Cornus capitata. Fitoterapia, 59, 45-46 (1988)
  2. Cheng, D. and Cao, X., Pomolic acid derivatives from the root of Sanguisorba officinalis. Phytochemistry, 31, 1317-1320 (1992) https://doi.org/10.1016/0031-9422(92)80499-5
  3. Gerhauser, C., You, M., Liu, J., Moriarty, R. M., Hawthome, M., Mehta, R. G., Moon, R. C., and Pezzuto, J. M., Cancer chemopreventive potential of sulforamate, a novel analogue of suforaphane that induces phase 2 drug-metabolizing enzymes. Cancer Res., 57, 272-278 (1997)
  4. Hwang, B. Y., Chai, H.-B., Kardono, L. B. S., Riswan, S., Farnsworth, N. R., Cordell, G. A., Pezzuto, J. M., and Kinghorn, A. D., Cytotoxic triterpenes from the twigs of Celtis philippinensis. Phytochemistry, 62, 197-201 (2003) https://doi.org/10.1016/S0031-9422(02)00520-4
  5. Jang, D. S., Park, E. J., Hawthorne, M. E., Vigo, J. S., Graham, NJ. G., Cabieses, F., Santarsiero, B. D., Mesecar, A. D., Fong, H. H. S., Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D., Constituents of Musa x paradisiaca cultivar with the potential to induce the phase II enzyme, quinone reductase. J. Agric. Food Chem., 50, 6330-6334 (2002) https://doi.org/10.1021/jf0206670
  6. Jang, D. S., Park, E. J., Kang, Y.-H., Su, B.-N., Hawthorne, M. E., Vigo, J. S., Graham, J. G., Cabieses, F., Fong, H. H. S., Mehta, R. G., Pezzuto, J. M., and Kinghorn, A. D., Compounds obtained from Sida acuta with the potential to induce quinone reductase and to inhibit 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions in a mouse mammary organ culture model. Arch. Pharm. Res., 26, 585-590 (2003) https://doi.org/10.1007/BF02976704
  7. Kakuno, T., Yoshikawa, K., and Arihara, S., Triterpenoid saponins from flex crenata fruit. Phytochemistry, 31, 3553-3557 (1992) https://doi.org/10.1016/0031-9422(92)83726-F
  8. Kinghorn, A. D., Su, B.-N., Lee, D., Gu, J.-Q., and Pezzuto, J. M., Cancer chemopreventive agents discovered by activity-guided fractionation: an update. Curr. Org. Chem., 7, 213-226 (2003) https://doi.org/10.2174/1385272033373003
  9. Lee, T.-H., Kuo, Y.-C., Wang, G.-J., Kuo, Y.-H., Chang, C.-I., Lu, C.-K., and Lee, C.-K., Five new phenolics from the roots of Ficus beecheyana. J. Nat. Prod., 65, 1497-1500 (2002) https://doi.org/10.1021/np020154n
  10. Mahato, B. S. and Kundu, P A., $^{13}$C-NMRspectra of pentacyclic triterpenoids- A compilation and some salient features. Phytochemistry, 37,1517-1575 (1994) https://doi.org/10.1016/S0031-9422(00)89569-2
  11. Maxuitenko, Y. Y., MacMillan, D. L., Kensler, T. W., and Roebuck, B. D., Evaluations of the post-initiation effects of oltipraz on aflatoxin B1-induced preneoplastic foci in a rat model of hepatic tumorigenesis. Carcinogenesis, 14, 2423-2425 (1993) https://doi.org/10.1093/carcin/14.11.2423
  12. Nawwar, M. A. M., Buddrus, J., and Bauer, H., Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry, 21,1755-1758(1982)
  13. Pezzuto, J. M., Song, L. L., Lee, S. K., Shamon, L. A., Mata-Greenwood, E., Jang, M., Jeong, H.-J., Pisha, E., Mehta, R. G., and Kinghorn, A. D., Bioassay methods useful for activity-guided isolation of natural product cancer chemopreventive agents. In Hostettmann, K., Gupta, M. P., and Marston, A. (Eds.). Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas. Harwood Academic Publishers, Amsterdam, pp. 81-110 (1999)
  14. Sanduja, R., Alam, M., and Euler, K. L., Constituents of Couepia paraensis. J. Nat. Prod., 46,149 (1983) https://doi.org/10.1021/np50025a019
  15. Sanduja, R., Euler, K. L., Alam, M., Korp, J. D., and Bernal, I., Isolation and crystal structure of 5-hydroxy-2,8-dimethyl-6,7dimethoxybenzopyran- 4-one from Couepia paraensis. Phytochemistry, 21,1457-1453 (1982) https://doi.org/10.1016/0031-9422(82)80171-4
  16. Spitzer, V., Marx, F., Maia, J. G. S., and Pfeilsticker, K., Occurrence of conjugated fatty acids in the seed oil of Couepia longipendula (Chrysobalanaceae). J. Am. Oil Chem. Soc., 68,440-442 (1991) https://doi.org/10.1007/BF02663764
  17. Su, B.-N., Cuendet, M., Farnsworth, N. R., Fong, H. H. S., Pezzuto, J. M., and Kinghorn, A. D., Activity-guided fractionation of the seeds of Ziziphus jujuba using a cyclooxygenase-2 inhibitory assay. Planta Med., 68, 1125-1128 (2002) https://doi.org/10.1055/s-2002-36354
  18. Talalay, P, De Long, M. J., and Prochaska, H. J., Molecular mechanisms in protection against carcinogenesis. In Cory, J. G., and Szentivanyi, A. (Eds.). Cancer Biology and Therapeutics. Plenum Press, New York, NY, pp. 197-216 (1981)
  19. Takeoka, G., Dao, L., Teranish, R., Wong, R., Flessa, S., Harden, L., and Edwards, R., Identification of three triterpenoids in almond hulls. J. Agric. Food Chem., 48, 3437-3439 (2000) https://doi.org/10.1021/jf9908289
  20. Wattenberg, L. w., An overview of chemoprevention: current status and future prospects. Proc. Soc. Exp. Biol. Med., 216, 133-141 (1997) https://doi.org/10.3181/00379727-216-44163
  21. Wu, T.-S., Teh, J.-H., and Wu, P.-L.,The heartwood constituents of Tetradiumglabrifolium. Phytochemistry, 40, 121-124 (1995) https://doi.org/10.1016/0031-9422(95)00248-6
  22. Yoshikawa, K., Mimura, N., and Arihara, S., Isolation and absolute structures of enantiomeric 1,2-bis(4-hydroxy-3-methoxyhenyl)-1,3-propanediol 1-O- glucosides from the bark of Hovenia trichocarpa. J. Nat. Prod., 61, 1137-113 (1998) https://doi.org/10.1021/np980003d