DOI QR코드

DOI QR Code

Verification and Application of Surface-Velocity Measurement Method Using LSPIV

LSPIV를 이용한 표면유속 측정기법의 검증 및 적용

  • 김영근 (명지대학교 토목ㆍ환경공학과) ;
  • 노영신 (명지대학교 토목ㆍ환경공학과) ;
  • 윤병만 (명지대학교 토목ㆍ환경공학과)
  • Published : 2004.02.01

Abstract

The purpose of this study is to verify LSPIV technique. Verification was made using moving cart with known velocity. The difference of velocity values obtained using these methods are within 5%, which means that LSPIV can be used in the field with reasonable accuracy After verification, LSPIV was applied to the river. The Neungwon stream and the Gonjiam stream, tributaries of the Kyungan stream, were selected as the test sites for application. The results of the test application were compared with those obtained by 3-D electromagnetic current meter and electron-wave surface velocity meter. Results show that the velocity values obtained using LSPIV coincide well with those obtained using conventional devices with maximum difference of 8%.

본 연구에서는 LSPIV기법의 효율성과 적용성을 검증하기 위해 유속검정용 전동기계를 이용한 검증실험을 통하여 LSPIV기법을 검증하였다. 검증을 실시한 후에 LSPIV기법을 실제하천에 적용하였다 대상하천으로는 경안천의 지류인 능원천과 곤지암천을 선택하였으며, 3차원 유속계 및 기존의 표면유속 측정에 사용해 왔던 전자파 표면유속계의 측정결과와 비교하였다. 본 연구를 통해 나타난 결과를 살펴보면 검증실험에 사용된 전동차의 결과값과 비교했을 때 LSPIV기법의 측정값은 5%이내의 오차로 잘 일치하는 경향을 나타냈으며, 실제하천에 적용하여 기존의 측정장치와 비교하였을 때에도 최대 8% 이내의 오차로 잘 일치하였다.

Keywords

References

  1. 김미영, 이영호, 서민식 (1999). '해류표면의 속도계측을 위한 SF-PIV의 개발.' 1999년 춘계학술대회 논문집, 한국해양환경공학회, pp. 155-160
  2. 윤병만, 노영신, 김영근, 유권규 (2002). '개수로실험장치를 이용한 LSPIV기법의 검증.' 2002 수자원학회 학술발표회 논문집, 한국수자원학회, pp. 982-988
  3. Adrian, R. J. (1991). 'Particle Image Techniques for Experimental Fluid Mechanics.' Annual Rev. Fluid Mech, Vol. 23, pp. 261-304 https://doi.org/10.1146/annurev.fl.23.010191.001401
  4. Aya, S., Fujita, I. and Yagyu, M. (1995). 'Field-observation of flood in a river by video image analysis.' Annual Jr. of Hydraulic Eng., JSCE, Vol. 39, pp. 447-452 https://doi.org/10.2208/prohe.39.447
  5. Fujita, I., Muste, M. and Kruger, A. (1998). 'Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic Applications.' Jr. of Hydraulic Research, 36(3), pp. 397-414 https://doi.org/10.1080/00221689809498626
  6. Fujita, I., and Komura, S. (1994). 'Application of Video Image Analysis for Measurements of River-Surface Flow.' Proc. of Hydraulic Engineering, JSCE, Vol. 38, 733-738 https://doi.org/10.2208/prohe.38.733
  7. Kinoshita, R. (1984). 'Present status and future prospects of river flow analysis by aerial photograph.' Proc. of JSCE, No.345/II-1, pp. 1-19
  8. Leese, L.A., Novak, C.S., and Clark, B.B. (1971). 'An automated technique for obtaining cloud motion from geosynchronous satellite data using cross correlation.' Jr. of Appl. Meteorol., Vol. 10, pp. 118-132 https://doi.org/10.1175/1520-0450(1971)010<0118:AATFOC>2.0.CO;2
  9. Muste, M., Fujita, A. and Kruger A. (1998). 'Experimental comparison of two laser-based velocimeters for flows with alluvial sand.' Experiments in Fluids, Vol. 24, pp. 273-284 https://doi.org/10.1007/s003480050174
  10. Randy, C. (1997). A simplified approach to image processing. Prentice Hall
  11. Stevens, C. and Coates, M. (1994). 'Application of a maximized cross-correlation technique for resolving velocity fields in laboratory experiments.' Jr. of Hydraulic Research, 32(2), pp. 195-212 https://doi.org/10.1080/00221686.1994.10750035

Cited by

  1. Real-time Discharge Measurement of the River Using Fixed-type Surface Image Velocimetry vol.44, pp.5, 2011, https://doi.org/10.3741/JKWRA.2011.44.5.377
  2. Development and Evaluation of Automatic Discharges Measurement Technology for Small Stream Monitoring vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.347