Growth of nickel-catalyzed carbon nanofibers using MPCVD method and their electrical properties

  • Kim, Sung-Hoon (Department of Nano Materials Science & Engineering, Silla University)
  • Published : 2004.02.01

Abstract

Carbon nanofilaments were formed on silicon substrate via microwave plasma-enhanced chemical vapor deposition method. The structure of carbon nanofilaments was identified as the carbon nanofibers. The extent of carbon nanofibers growth and the diameters of carbon nanofibers increased with increasing the total pressure. The growth direction of carbon nanofibers was horizontal to the substrate. Laterally grown carbon nanofibers showed the semiconductor electrical characteristics.

Keywords

References

  1. J. of Catalysis v.216 New catalytic phenomena on nanostructured(fibers and tubes) catalysts M.J.Ledoux;R.Vieira;C.Pham-Huu;N.Keller https://doi.org/10.1016/S0021-9517(02)00108-2
  2. Nature v.221 Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces S.D.Robertson https://doi.org/10.1038/2211044a0
  3. Nature v.354 Helical microtubules of graphitic carbon S.Iijima https://doi.org/10.1038/354056a0
  4. Surface Science Reports v.42 Electronic properties of carbon nanostructures M.Knupfer https://doi.org/10.1016/S0167-5729(00)00012-1
  5. Mater. Res. Bull v.34 Electrical conducitivity and field emission characteristics of hot-pressed sintered carbon nanotubes R.Ma;C.L.Xu;B.Q.Wei;J.Liang;D.H.Wu;D.Li https://doi.org/10.1016/S0025-5408(99)00064-1
  6. Applied Surface Science v.212 Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst K.Kamada;T.Ikuno;S.Takahashi;T.Oyama;T.Yamamoto;M.Kamizono;S.Ohkura;S.Honda;M.Katayama;T.Hirao;K.Oura https://doi.org/10.1016/S0169-4332(03)00119-3
  7. Nature v.386 Individual single-wall carbon nanotubes as quantum wires S.J.Tans;M.H.Devoret;H.Dai;A.Thess;R.E.Smalley;L.J.Geerligs;C.Dekker https://doi.org/10.1038/386474a0
  8. Microelectronic Engineering v.61 Batch processing of nanometer-scale electrical circuitry based on in-situ grown single-walled carbon nanotubes L.Marty;V.Bouchiat;A.M.Bonnot;M.Chaumont;T.Fournier;S.Decossas;S.Roche https://doi.org/10.1016/S0167-9317(02)00487-2
  9. Thin Solid Films v.253 Deposition of white diamond thin films by increasing the total pressure in a microwave-plasma-enhanced chemical vapour deposition system S.H.Kim;Y.S.Park;J.W.Lee https://doi.org/10.1016/0040-6090(94)90303-4
  10. Science v.282 Synthesis of large arrays of well-aligned carbon nanotubes on glass Z.F.Ren;Z.P.Huang;J.W.Xu;J.H.Wang;P.Bush;M.P.Sirgal;P.N.Provencio https://doi.org/10.1126/science.282.5391.1105
  11. Chem.Phys.Lett. v.340 Controlled growth fo well-aligned carbon nanotubes with large diameters X.Wang;Y.Liu;D.Zhu https://doi.org/10.1016/S0009-2614(01)00410-9
  12. Appl. Phys. Lett. v.77 Plasmainduced alignment of carbon nanotubes C.Bower;W.Zhu;J.Sungho;O.Zhou https://doi.org/10.1063/1.1306658
  13. J. Phys. Chem. B Role of transition metal catalysis in single-walled carbon nanotube growth in chemical vapor deposition Y.Homma;Y.Kobayashi;T.Ogino;D.Takagi;R.Ito;Y.J.Jung;P.M.Ajayan
  14. Carbon v.27 Catalytic growth of carbon filaments R.T.K.Baker https://doi.org/10.1016/0008-6223(89)90062-6
  15. Materials Science & Engineering C v.24 Self-assembled interconnection by bamboolike carbon nanotubes S.H.Kim;J.C.Park;B.Kim;S.K.Lee;D.U.Kim;Y.H.Kim https://doi.org/10.1016/j.msec.2003.09.028
  16. Appl. Phys. Lett v.73 Contacting carbon nanotubes selectively with lowohmic contacts for four-probe electric measurements A.Bachtold;M.Henny;C.Terrier;C.Strunk;S.Schonenberger;J.P.Salvetat;J.M.Bonard;L.Forro https://doi.org/10.1063/1.121778
  17. J. Phys. Chem. B v.103 Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices H.Dai;J.Kong;C.Zhou;N.Franklin;T.Tombler;A.Cassel;S.Fan;M.Chapline https://doi.org/10.1021/jp992328o