DOI QR코드

DOI QR Code

Saturated Absorption Spectroscopy of 13C2H2 in the Near Infrared Region

  • Moon, H. S. (Center for Information and Telecommunication Standards, Korea Research Institute of Standards and Science) ;
  • Lee, W. K. (Center for Information and Telecommunication Standards, Korea Research Institute of Standards and Science) ;
  • Suh, H. S. (Center for Information and Telecommunication Standards, Korea Research Institute of Standards and Science)
  • Received : 2004.02.19
  • Published : 2004.03.01

Abstract

Using the external cavity spectroscopy method, we have observed the saturated absorption spectrum of the P(16) line of the v$_1$+v$_3$ band of $^{13}C$_2$H$_2$$. The frequency of a laser has been stabilized to the saturated absorption spectrum. The relative contrast of the saturation spectrum is about 7% with respect to the linear absorption and the linewidth is about 1.8 MHz. The frequency fluctuation of the stabilized LD is about $\pm$ 20 KHz for a sampling time of 100 ms.

Keywords

References

  1. L.-S. Ma and J. L. Hall, 'Optical heterodyne spectros-copy enhanced by an external optical cavity,' IEEE J. Quantum Electron. vol. 26, no. 11, pp. 2006-2012, 1990 https://doi.org/10.1109/3.62120
  2. J. Ye, L.-S. Ma and J. L. Hall, 'Ultrasensitive detec-tions in atomic and molecular physics: demonstration in molecular overtone spectroscopy,' J. Opt. Soc. Am. B, vol. 15, no. 1, pp. 6-15, 1998 https://doi.org/10.1364/JOSAB.15.000006
  3. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, 'Ultranarrow $^{13}C_2H_2$ saturated-absorption lines at 1.5 ${\mu}m$,' Opt. Lett., vol. 19, no. 11, pp. 840-842, 1994 https://doi.org/10.1364/OL.19.000840
  4. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, T. Enami, and M. Ohtsu, 'Highly precise 1 THz optical frequency difference measurement of 1.5 um molecular absorption lines', Opt. Lett., vol. 20, pp. 410-412, (1995) https://doi.org/10.1364/OL.20.000410
  5. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, 'Accurate optical frequency atlas of the 1.5-${\mu}um$ bands of acetylene,' J. Opt. Soc. Am. B, vol. 13, no. 12, pp. 2708-2714, 1996 https://doi.org/10.1364/JOSAB.13.002708
  6. A. Onae, K. Okumura, Y. Miki, T. Kurosawa, E. Sakuma, J. Yoda, K. Nakagawa,.'Saturation spectros-copy of an acetylene molecule in the 1550 nm region using an erbium doped fiber amplifier,' Opt. Comm. vol. 142, pp. 41-44, 1997 https://doi.org/10.1016/S0030-4018(97)00308-8
  7. A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M Kourogi, K. Imai, and B. Widiyatomako, 'Toward an Accurate Frequency Standard at 1.5 ${\mu}$m Based on the Acetylene Overtone Band Transition,' IEEE Trans. Instru. Meas., vol. 48, no. 2, pp. 563-566, 1999 https://doi.org/10.1109/19.769658
  8. A. Onae, T. Ikegami, K. Sugiyama, F. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, 'Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 um using a two-color mode-locked fiber laser,' Opt. Comm. vol. 183, pp. 181-187, 2000 https://doi.org/10.1016/S0030-4018(00)00854-3
  9. C. Svelto, G. Galzerano, A. Onae, and E. Bava, 'Nonlinear spectroscopy of isotopic acetylene at 1.5 ${\mu}m$ for absolute frequency stabilization of diode-pumped Er-Yb:glass laser,' IEEE Trans. Instru. Meas., vol. 50, no. 2, pp. 497-499, 2001 https://doi.org/10.1109/19.918175
  10. G. Galzerano, C. Svelto, F. Ferrario, A. Onae, M. Marano, E. Bava, 'Nonlinear spectroscopy of isotopic acetylene at 1.5 ${\mu}m$ for absolute frequency stabilization of diode-pumped Er-Yb:glass laser,' Opt. Comm. vol. 209, pp. 411-416, 2002 https://doi.org/10.1016/S0030-4018(02)01718-2
  11. A. S. Czajkowski, A. A Made, P. Dube, K. J. Siemsen, and J. E. Bernard, 'Optical references for telecom wavelengths and measurement of their absolute fre-quency,' LEOS2002, 2002 https://doi.org/10.1109/LEOS.2002.1134036
  12. T. J. Quinn, 'Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),' Metrologia, vol. 40, pp. 103-133, 2003 https://doi.org/10.1088/0026-1394/40/2/316
  13. Feng-Lei Hong, Atsushi Onae, Jie Jiang, Ruixiang Guo, Hajime Inaba, Kaoru Minoshima, Thomas R. Schibli, and Hirokazu Matsumoto, and Ken'ichi Nakagawa, 'Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,' Opt. Lett. vol. 28, no. 23, pp. 2324-2326, 2003 https://doi.org/10.1364/OL.28.002324
  14. W. C. Swann and S. L. Gilbert, 'Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration,' J. Opt. Soc. Am. B, vol. 17, no. 7, pp. 1263-1270, 2000 https://doi.org/10.1364/JOSAB.17.001263
  15. Motoichi Ohtsu, in Frequency Control of Semiconductor Lasers, (John Wiley & Sons, Ins., New York, 1996), pp. 1-232
  16. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M.Ford, A. J. Munley, and H. Ward, 'Laser phase and frequency stabilization using an optical resonator,' Appl. Phys. B, vol. 31, pp. 97-105, 1983 https://doi.org/10.1007/BF00702605

Cited by

  1. Detection of Methane and Ethane by Continuous-Wave Cavity Ring-Down Spectroscopy Near 1.67 μm vol.12, pp.1, 2008, https://doi.org/10.3807/JOSK.2008.12.1.001