DOI QR코드

DOI QR Code

Antimicrobial Activity of Soy Protein Hydrolysate with Asp. saitoi Pretense

콩 단백 효소 가수분해물의 항균활성

  • Published : 2004.02.01

Abstract

Soy protein was hydrolyzed by 5 different pretenses and determinated antimicrobial activity of each hydrolysate. The soy protein hydrolysate treated by pretense from Aspergillus saitoi showed the highest antimicrobial activity among the protease studied and was used for further analysis. Soy protein hydrolysate was fractionated by ultrafiltration for M.W. 10,000,3,000 and 1,000. The M.W 1,000∼3,000 showed the highest antimicrobial activity. The minimum inhibition concentrations of obtained fraction were 0.5∼0.8 mg/mL for gram positive and negative microbials, and its activity was even observed after heating at 121$^{\circ}C$ for 10 min, suggesting that hydrolyzed protein having antimicrobial activity is quite heat-stable. Reverse-phase HPLC was further applied to separate the fraction and 8 peaks were found. Each 8 peaks were separated and pooled and measured antimicrobial activity. Among them, retention time of peak at 16.02 min showed the prominent antimicrobial activity.

콩 단백질을 효소로 가수분해하였을 때 생성되는 항균활성 Peptide를 조사하고 천연 항균제로서의 이용 가능성을 조사하기 위하여 본 실험을 실시하였다. 분리 콩 단백질에 5종의 단백질 가수분해 효소를 작용시켜 생성된 가수분해물의 항균력을 측정하고, membrane filter를 이용해서 한외여과 하여, 분자량별로 분리된 각 fraction의 항균활성을 측정하였으며, 항균활성이 가장 높은 분획을 high peformance liquid chromatography로 분취한 항균성 peptide의 항균활성을 측정하였다 분리 콩 단백질에 5종의 단백질 분해 효소를 작용시켜 제조한 가수분해물 중 Aspergilius saitoi protease로 작용시킨 것이 항균활성이 가장 높았다 Aspergillus saitoi protease로 작용시킨 콩 단백질의 가수분해물을 여과 한계량 10,000, 3,000, 1,000 membrane filter로 cut-off하여 한외여과한 각 fraction의 항균활성을 측정한 결과 분자량 1,000∼3,000인 fraction의 항균활성이 가장 높게 나타났다. Aspergillus saitoi protease로 작용시킨 콩 단백질의 분자량 1,000∼3,000 범위 가수분해물의 MIC는 0.5∼0.8 mg/mL였으며 그람 양성균과 음성균 모두의 증식을 억제하는 경향을 보였다. Aspergillus saitol protease로 작용시킨 콩 단백질의 가수분해물을 121$^{\circ}C$, 10분간 열처리하였을 때도 그 항균활성을 유지하는 것으로 보았을 때 이는 열에 대단히 안정함을 알 수 있었다. 한외여과하여 얻어진 콩 단백질의 분자량 1,000∼3,000범위 가수분해물을 동결건조하여 HPLC의 결과 얻어 진 peak 별로 분획 수집을 반복하여 항균 활성을 측정한 결과 retention time 16.02(IV)의 peak에서 최고 항균활성을 확인하였다.

Keywords

References

  1. Bass GK. 1977. Method of testing disinfectans. In Disinfection, Sterilization. 2nd ed. Block SS, ed. Lea and Febiger, Philadelphia. p 49.
  2. Beuchat LR, Golden DA. 1989. Antimicrobials occurring naturally in foods. Food Technol 43: 134-139.
  3. Davidson PM, Post LS. 1983. Naturally occurring and miscellaneous food antimicrobials. In Antimicrobials in Foods Branen AL, Davidson PM, eds. Marcel Dekker, Inc. New York. p 371.
  4. Boman HG. 1995. Antimicrobial activity of peptide. Annu Rev Immunol 13: 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  5. Lehrer RI, Lichtenstein AK, Geanz T. 1993. Defensin, antimicrobial and cytoxic peptides of mammalian cells. Annu Rev Immunol 11: 105-128 https://doi.org/10.1146/annurev.iy.11.040193.000541
  6. Gennaro R, Skerlavai B, Romeo D. 1989. Purification, composition and activity of two bactenecins, antimicrobial peptides of bovine neutrophils. Insect. Immunol 57: 3142-3146.
  7. Elsbach P, Weiss J. 1993. Bactericidal/permeability increasing protein and host defense against Gram-negative bacteria and endotoxin. Curr Opin Immunol 5: 103-107 https://doi.org/10.1016/0952-7915(93)90088-A
  8. Lee JY, Boman A, Chuanxin S, Andersonn M, Jornvall H, Mutt V, Boman HG. 1989. Antimicrobial peptides from pig intestine- isolation of a mammalian cecropin. Proc Natl Acad Sci USA 86: 9159-9162. https://doi.org/10.1073/pnas.86.23.9159
  9. Bevins CL, Zasloff M. 1990. Peptide from frog skin. Annu Rev Biochem 59: 395-414. https://doi.org/10.1146/annurev.bi.59.070190.002143
  10. Simmaco M, Mignogna G, Barra D, Bossa F. 1994. Antimicrobial peptides from skin secretions of Rana esculenta. J Biol Chem 269: 11956-11961.
  11. Boma G. 1995. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13: 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
  12. Hoffmann JA, Hetru C. 1992. Insect defensins inducible antimicrobial peptides. Immunol Today 13: 411-415. https://doi.org/10.1016/0167-5699(92)90092-L
  13. Casteels P, Ampre C, Jacobs F, Tempst P. 1993. Functional and chemical characterization of Hymenoptaecin, an antimicrobial polypeptide that is infection inducible honeybee. J Biol Chem 268: 7044-7054.
  14. Hara S, Yamakawa M. 1995. Moricin, a novel type of antimicrobial peptide isolated from silkworm, Bombyx mori. J Biol Chem 270: 29923-29927. https://doi.org/10.1074/jbc.270.50.29923
  15. Orivel J, Rederker V, Caer JL, Krier F. 2001. Ponericins, new antimicrobial and insecticidal peptide from the venom of the ant pachycondvla goeldii. J Biol Chem 276: 17823-17829. https://doi.org/10.1074/jbc.M100216200
  16. Bilikova K, Wu GS, Simuth J. 2001. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32: 275-283. https://doi.org/10.1051/apido:2001129
  17. Pellegrini A, Thomas U, Bramaz N, Hunziker P, Fellenberg RV. 1999. Isolation and identification of three bacterial domains in the bovine ${\alpha}$-lactoalbumin molecule. Biochemica et Biophysica Acta 1426: 439-448. https://doi.org/10.1016/S0304-4165(98)00165-2
  18. Dionysius DA, Milne JM. 1997. antimicrobial peptides of bovine Lactoferrin. Purification and characterization. J Dairy Sci 80: 667-674. https://doi.org/10.3168/jds.S0022-0302(97)75985-X
  19. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabashi H, Kawase K. 1991. Potent antimicrobial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74: 4137-4141. https://doi.org/10.3168/jds.S0022-0302(91)78608-6
  20. Isidra R, Visser S. 1999. Identification of two distinct antimicrobial domains within the sequence of bovine ${\alpha}$s2-casein. Biochemica et Biophysica Acta 1428: 314-326. https://doi.org/10.1016/S0304-4165(99)00079-3
  21. Yi SD, Ju JH, Lee GH, Lee KT, Oh MJ. 2003. Antimicrobial activity of gluten hydrolysate with Asp. saitoi protease. J Korean Soc Food Sci Nutr 32: 745-751. https://doi.org/10.3746/jkfn.2003.32.5.745
  22. MacLowry JD, Jaqua MJ. 1970. Detailed methodology and implementation semiautomated serial dilution microtechnique for antimicrobial susceptibility testing. Appl Mecrobiol 20: 46-53.
  23. Manachini PL, Fortina MG, Parini C. 1988. Enzymatic modification of vegetable protein by a crude preparation from a strain of Bacillus licheniformis. J Sci Food Agrc 45: 263-266. https://doi.org/10.1002/jsfa.2740450309

Cited by

  1. Papain-induced Gelation of Soy Glycinin (11S) vol.71, pp.5, 2006, https://doi.org/10.1111/j.1750-3841.2006.00037.x
  2. Evaluation of biological activities of the short-term fermented soybean extract vol.22, pp.4, 2013, https://doi.org/10.1007/s10068-013-0172-z
  3. Allergenicity of Proteolytic Hydrolysates of the Soybean 11S Globulin vol.72, pp.3, 2007, https://doi.org/10.1111/j.1750-3841.2007.00307.x
  4. Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically vol.50, pp.2, 2013, https://doi.org/10.1016/j.lwt.2012.09.005
  5. The evaluation of proteases as coagulants for soy protein dispersions vol.100, pp.4, 2007, https://doi.org/10.1016/j.foodchem.2005.12.014
  6. Pepsin에 의한 Zein 가수분해물의 항균활성 vol.35, pp.2, 2004, https://doi.org/10.3746/jkfn.2006.35.2.127