References
- Biosci. Biotech. Biochem. v.56 Isolation of novel toluene-tolerant strain of Pseudomonas aeruginosa Aono,R.;M.Ito;A.Inoue;K.Horikoshi https://doi.org/10.1271/bbb.56.145
- Appl. Enviorn. Microbiol. v.60 Cloning of organic solvent tolerance gene ost A that determines n-hexane tolerance level in Escherichia coli Aono,R.;T.Negishi;H.Nakajima
- Appl. Envrion. Microbiol. v.63 Organic solvent tolerance and antibiotic resistance increased by overexpression of mar A in Escherichia coli Asako,H.;H.Nakajima;K.Kobayash;M.Kobayashi;R.Aono
- Appl. Environ. Microbiol. v.58 Unique and overlapping pollutant stress proteins of Escherichia coli Blom,A.;W.Harder;A.Matin
- Antonie van Leeuwenhoek v.64 Characterization of the heat shock response in Enterococcus faecalis Boutibonnes,P.;J.C.Giard;A.Hartke;B.Thammavongs;A.Auffray https://doi.org/10.1007/BF00870921
- FEMS Microbiol. Lett. v.138 Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis Flahaut,S.;A.Hartke;J.C.Giard;A.Benachour;P.Boutibonnes;Y.Auffray https://doi.org/10.1111/j.1574-6968.1996.tb08133.x
- J. Bacteriol. v.757 Adaptation of Escherichia coli to the uncoupler of oxidative phosphorylation 2,4-dinitrophenol Gage,D.J.;F.C.Neidhardt
- J. Bacteriol. v.172 Expression of the Caulobater heat shock gene dnaK is developmentally controlled during growth at normal temperatures Gomes,S.L.;J.W.Gober;L.Shapiro
- Appl. Environ. Microbiol. v.69 Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of the fatty acid composition of membrains Heipieper,H.J.;J.A.M.de Bont
- Appl. Environ. Microbiol. v.63 Effect of environmental factors on the tran/cis ratio of unsaturated fatty acid in Pseudomonas putida S12 Heipieper,H.J.;G.Meulenbeld;Q.van Oirschot;J.A.M.de Bont
- Nature. v.338 A Pseudomonas thrives in high concentrations of toluene Inoue,A.;K.Horikoshi https://doi.org/10.1038/338264a0
- Appl. Environ. Microbiol. v.48 Effect of solvent adaptation on the antibiotic resistance in Pseudomonas putida S12 Isken,S.;PMAC.Santos;J.A.M. de Bont
- Extremophiles v.2 Bacteria tolerant to organic solvents Isken,S.;J.A.M.de Bont https://doi.org/10.1007/s007920050065
- Nature. v.356 Successive action of DnaK, DnaJ and GroEL along the patheway of chaperone-ediated protein folding Langer,T.;C.Lu;H.Echols;J.Flanagan;M.K.Hayer;F.U.Hatle https://doi.org/10.1038/356683a0
- Appl. Environ. Microbiol. v.61 Two-dimensional gel electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-chlorophenol Lupi,C.G.;T.Colangelo;C.A.Mason
- Appl. Environ. Microbiol. v.61 Overexpression of the rob A gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli Nakajima,H.;K.Kobayashi;H.Asako;R.Aono
- Biosci. Biotechnol. Biochem. v.59 Sox RS gene increased the level of organic solvent tolerance in Escherichia coli Nakajima,H.;M.Kobayashi;T.Negishi;R.Aono https://doi.org/10.1271/bbb.59.1323
- Appl. Microbiol. Biotechnol. v.33 Induction of heat shock proteins during initiation of solvent formation in Clostridium acetobutylicum Pich,A.;F.Narberhaus;H.Bahl https://doi.org/10.1007/BF00604941
- Environ. Microbiol. v.1 no.3 Multiple responses of Gram-negative bacteria to organic solvents Segura,A.;E.Duque;G.Mosqueda;J.L.Ramos;F.Junker https://doi.org/10.1046/j.1462-2920.1999.00033.x
- Biokim. Biophy. Acta. v.1286 Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes Weber,F.J.;J.A.M.de Bont https://doi.org/10.1016/S0304-4157(96)00010-X