DOI QR코드

DOI QR Code

Lactobacillus brevis의 고정화 균체에 의한 γ-aminobutyric acid의 연속 생산

Continuous Production of γ-aminobutyric Acid by Immobilization of Lactobacillus brevis

  • 류병호 (경성대학교 식품공학과) ;
  • 전재호 (경성대학교 식품공학과)
  • 발행 : 2004.02.01

초록

Lactobacillus brevis BH-21의 균체를 고정화하여 column형 reactor를 이용하여 $\gamma$-aminobutyric acid의 연속적 생산을 검토하였다. Lactobacillus brevis BH-21에 의한 $\gamma$-aminobutyric acid 생산조건은 고정화 담체로는 3.0% sodium alginate가 좋았고 직경 2.2 mm의 bead를 사용하여 기질의 주입속도는 10 mL/h이 최적 조건이었다. Lactobacillus brevis BH-21의 고정화 균체와 유리 균체를 사용하여 $\gamma$-aminobutyric acid의 생산을 최적 조건하에서 1, 2, 3, 및 4차 발효 동안 48시간마다 신선한 기질을 주입하면서 비교ㆍ조사한 결과 고정화 균체를 사용 시에 생산량이 더 많았다. Column형 reactor에 의한 연속 발효 시 발효 25일까지 생산이 우수하였고 발효 30일까지는 $\gamma$-aminobutyric acid를 생산할 수 있었다.

The optimal conditions for the continuous production of $\gamma$-aminobutyric acid by immobilization of Lactobacillus brevis BH-21 using column type reactor were investigated. The optimal conditions of operation were 2.2 mm diameter bead of 3.0% sodium alginate at 10 mL/h of substrate feeding rate. Continuous production by immobililzed cells showed the highest productivity with replacement of fresh medium in every 48h for fourth fermentatoin cycle following the rendition of $\gamma$-aminobutyric acid productivity. A productivity of $\gamma$-aminobutyric acid could be obtained for 25 days by continuous column type reactor under optimal conditions.

키워드

참고문헌

  1. Synapse v.24 Post-embedding immunogold labeline of Gamma-aminobutyric acid in lamina Ⅱ of the spinal trigeminal subnucleus pars caudalis, Ⅰ. A qualitative J.R.Almond;L.E.Westrum;M.A.Henry https://doi.org/10.1002/(SICI)1098-2396(199609)24:1<39::AID-SYN5>3.0.CO;2-H
  2. Biotechnol. lett. v.3 Covalent stabilization of alginate gel for the entrapment of whole cells Birnbaum,S.;R.Pendleton;P.O.Larsson;K.Mosbach https://doi.org/10.1007/BF01134097
  3. Plant Physiol. v.115 The metabolism and function of γ-aminobutyric acid Bown,A.W.;B.J.Shelp
  4. Plant Physiol. v.115 The metabolism and function of γ-aminobutyric acid Bown,A.W.;B.J.Shelp
  5. Korean, J. Food technol. v.24 no.4 Changes in γ-aminobutyric acid and the main constituents by a treating conditions and of anaerobically treated green tea Leaves Chang,J.S.;B.S.Lee;Y.C.Kim
  6. Synapse v.6 Aronin, Synaptic interactions between GABAergic neurone and trigemiothalamic cells in the rat trigeminal nucleus caudalis Difiglia,M. https://doi.org/10.1002/syn.890060408
  7. Textbook of Pain(3rd ed.) Central nervous system mechanisms of pain modulation Fields,H.L.;A.I.Basaum;P.D.Wall(ed);R. Melzak(ed.)
  8. Appl. Microbiol. Biotechnol. v.31 Continuous fermentation of soy sauce by immobilized cells of Zygosaccharomyces rouxii in an air lift reactor Hamada,T.;T.Ishiyama;H.Motai
  9. Food & Develop. v.36 no.6 Recent studies on Biological function of GABA, On improvements of hypertension and brain function Hirusi,K.
  10. J. Bioeng. & Biotechnol. Japan. v.75 no.4 Production of γ - aminobutric acid by lactic acid bacteria Hayakawa,K.;Y.Ueno;S.Kawamura;R.Tanisucchi;K.Oda
  11. Agric. Biol. chem. v.54 A new process for soy sauce fermentation of immobilized yeasts Horisu,M.;Y.Maseda;K.Kawai https://doi.org/10.1271/bbb1961.54.295
  12. Thesis of Ph. D., Kyungsung University Production of γ - aminobutyric acid by immobilization of lactic acid bacteria isolated from salt fermented anchovy Jeun,J.H.
  13. Food & Develop. v.36 no.6 Development of a super GABA by lactic acid fermentation Kitaka,A.;T.Dosya;O.Dakenori
  14. Science v.147 Probiots, Growth promoting factors produced by microorganism Lilly,D.M.;R.H.Stillwel https://doi.org/10.1126/science.147.3659.747
  15. Plant Cell v.6 Analysis of a soluble calmodulin binding protein from fava bean roots: Identification of glutamate decarboxylase as a calmodulin-activated enzyme Ling,V.;W.A.Snedden;B.J.Shelp;S.M.Assmann https://doi.org/10.1105/tpc.6.8.1135
  16. Science v.50 Pain mechanisms: a new theory Melzack,R.;P.D.Wall
  17. Process Biochem. v.20 Production of vinegar by immobilized cells Mori,A.
  18. Food Processing v.31 no.9 Accumulation of γ - aminobutric acid (GABA) in the rice germ Nakagawa,K.;A.Onota
  19. J. Ferment. Technol. (Japan) v.66 Simultaneous saccharification and alcohol fermentation of unheated starch by free immobilized and coimmobilized systems of glycoamylase and Saccharomyces cerevisiae Nam,K.D.;M.H.Choi;W.S.Kim;H.S.Kim;B.H.Ryu https://doi.org/10.1016/0385-6380(88)90010-6
  20. J. Dairy Sci. v.81 Production of γ - aminobutric acid by cheese starters during cheese ripening Nomura,M.;H.Kimofo;Y.Someya;S.Furukawa;I.Suzaki https://doi.org/10.3168/jds.S0022-0302(98)75714-5
  21. J. Food Sci. v.50 Beer brewing with immobilized whole cells Onaka,K.;Y.Okamoto;T.Inoue;S.Kubo https://doi.org/10.1111/j.1365-2621.1985.tb10463.x
  22. J. Food Sci. v.50 Fernentation of soy sauce with immobilized whole cells Osaki,K.;Y.Okamoto;T.Akao;S.Nagata;H.Takamastsu https://doi.org/10.1111/j.1365-2621.1985.tb10463.x
  23. J. Histochem. v.40 Techniques to optimize postembedding single and double staining for amino acid neurotrans-mitters Phend,K.D.;R.J.Weinberg;A.Rustioni
  24. Phytochemistry v.29 Metabolism enzymology and possible roles of 4-aminobutyrate in higher plants Satya Narayan, V.;P.M.Nair https://doi.org/10.1016/0031-9422(90)85081-P
  25. Biotechnol. Boeng. v.26 Diffusion characteristics of substrates in Ca-alginate beads Tanaka,H.;M.Matsumura;I.A.Veliky https://doi.org/10.1002/bit.260260111
  26. Agric. Biol. Chem. v.51 Conversion of Glutamic acid to γ - aminobutyric acid in tea leaves under anaerobic conditions Toshinobu,M.;T.Tsushida
  27. J. Biosci. Biotech. v.93 no.1 Production γ - aminobutric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005 Yokoyams,S.;J.I.Hiramatsu;K.Hayakawa
  28. J. Ferment. Technol. v.64 Production of vitamin B$_{12}$ by living bacterial cells immobilized in calcuium alginate gels Yongsmith,B.;K.Chutima

피인용 문헌

  1. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.705
  2. A Comparative Study of GABA, Glutamate Contents, Acetylcholinesterase Inhibition and Antiradical Activity of the Methanolic Extracts from 10 Edible Plants vol.44, pp.4, 2012, https://doi.org/10.9721/KJFST.2012.44.4.447
  3. Effects of Ethanol Extracts from Zingiber officinale Rosc., Curcuma longa L., and Curcuma aromatica Salisb. on Acetylcholinesterase and Antioxidant Activities as well as GABA Contents vol.41, pp.10, 2012, https://doi.org/10.3746/jkfn.2012.41.10.1395