DOI QR코드

DOI QR Code

대장균에서 chaperons 분자와 저온배양에 의한 CGTase의 가용성 발현 증대

Enhancement of Soluble Expression of CGTase in E. coli By Chaperone Molecules and Low Temperature Cultivation.

  • 발행 : 2004.02.01

초록

E. coli에서 B. macerans 유래 cyclodextrin glucanotransferase (CGTase)의 활성형 생산에 GroEL/ES chaperone과의 공발현과 저온 배양의 공동작용 효과에 대해 조사하였다. 실험에 사용된 cgt와 groEL/ES 유전자를 발현하는 pTCGTl과 pGroll은 각각 T7 promoter와 Pzt-1 promoter에 의해 조절되고 이들을 E. coli에 도입시켰다. 대수증식기 초기(2 hr)와 대수증식기 중기(3 hr)에 tetrarycline 10 ng/ml 과 IPTG 1 mM을 첨가하여 각각의 유전자를 발현시켰다. CGTase활성과 specific artivity 측정 시 $37^{\circ}C$에서 pTCGTl 단독 발현 보다 $25^{\circ}C$에서 chaperone과 함께 발현시킨 경우 2배나 높은 활성이 측정됐으며, SDS-PACE 분석결과 $37^{\circ}C$에서 단독 발현 시킬경우 20% 정도 가용성 형태로 발현되던 것이 $25^{\circ}C$에서 chaperone과 공발현 시에는 거의 3.5배가 넘는 69%가 가용성으로 전환됨을 알 수 있었다. 이와 같이 분자 chaperone과 $25^{\circ}C$에서의 저온 배양은 E. coli에서 활성형질 가용성 CGTase의 생산 증가에 큰 영향을 미치는 것으로 나타났다.

The synergistic effect of lowered incubation temperature and CroEL/ES expression on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) was studied in recombinant E. coli. pTCGTl and pGroll carrying the cgt and groEL/ES genes under the control of T7 promoter and pzt-I promoter, respectively, were co-introduced. Tetracycline (10 ng/ml) and IPTG (1 mM) were added at the early-exponential phase (2 hr) and mid-exponential phase (3 hr). Low temperature cultivation at $25^{\circ}C$ with groEL/ES expression improved the activity of CGTase by two fold, compared to $37^{\circ}C$ cultivation without chaperones. SDS-PACE analysis revealed that about 69% of CGTase in the total CGTase protein was found in the soluble fraction by overexpression of GroEL/ES and cultivation at$25^{\circ}C$, whereas 20% of CGTase was detected in the soluble fraction when E. coli was cultivated at $37^{\circ}C$ without chaperone. The amount of soluble CGTase from $25^{\circ}C$ culture with chaperone was 3.5-fold higher than that of $37^{\circ}C$ culture without chaperone. Therefore the expression of CroEL/ES and low temperature cultivation greatly enhanced the soluble production of CGTase in E. coli.

키워드

참고문헌

  1. J. Biol. Chem. v.268 Inclusion body formation and protein stability in sequence variants of interleukin-1β Chrunyk,B.A.;J.Evans;J.Lillqust;P.Young;R.Wetzel
  2. Proteion Expression Purif. v.23 Chaperone-assisted overexpression of an active D-carbamolylase from Agrobacterium tumefaciens AM10 Dipti,S.;S.Rakesh;M.V.Rakesh https://doi.org/10.1006/prep.2001.1532
  3. Proc. Natl. Acad. Sci. USA v.89 Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli Gragerov,A.;E.Nudler;N.Komissarova;G.A.Gaitanaris;M.E.Gottesman;V.Nikiforov https://doi.org/10.1073/pnas.89.21.10341
  4. Food Sci. Biotechnol. v.8 Enhancement of solubility of Bacillus macerans cyclodextrin glucanotransferase by thioredoxin fusion Han,N.S.;B.Y.Tao
  5. J. Microbiol. Biotechnol. v.11 Effects of environmental factors on n vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli Jin,H.H.;N.S.Han;D.K.Kweon;Y.C.Park;J.H.Seo
  6. J. Microbiol. Biotechnol. v.10 Refolding of Bacillus macerase cyclodextrin glucano-transferase expressed as inclusion bodies in recombinant Escherichia coli Kim,C.I.;M.D.Kim;Y.C.Park;N.S.Han;J.H.Seo
  7. Appl. Environ. Microbiol. v.61 Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene Klein,J.;P.Dhurjati
  8. J. Biosci. Bioeng. v.90 Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins Kondo,A.;J.Kohda;Y.Endo;T.Shiromizu;Y.Kurokawa;K.Nishihara;H.Yanagi;T.Yura;H.Fukuda https://doi.org/10.1263/jbb.90.600
  9. J. Microbiol. Biotechnol. v.12 Overproduction of Bacillus macerans cyclodextrin glucano-transferase in E. coli by coexpression of GroEL/ES chaperone Kwon,M.J.;S.L.Park;S.K.Kim;S.W.Nam
  10. Kor. J. Life Sci. v.12 Improvment of production of active cyclo-dextrin glucanotransferase by coexpression GroEL/ES chaperone in E. coil Kwon,M.J.;S.L.Park;B.W.Kim;S.K,Kim;S.W.Nam https://doi.org/10.5352/JLS.2002.12.6.688
  11. Starch v.46 High-level expression of cyclodextrin glucanotransferase in E. coli using a T7 promoter expression system Lee,P.K.C.;B.Y.Tao
  12. J. Biol. Chem. v.267 Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli Lee,S.C.;P.O.Olins
  13. Anal. Biochem. v.181 A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (a-cyclodextrin) glucanotransferase Lejeune,A.;K.Sakaguchi;T.Imanaka https://doi.org/10.1016/0003-2697(89)90385-0
  14. Appl. Environ. Microbiol. v.64 Chaperone coexpression plasmids: differential and synergistic roles DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli Nishihara,K.;M.Kanemori;M.Kitagawa;H.Yanagi;T.Yura
  15. Appl. Environ. Microbiol. v.66 Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli Nishihara,K.;M.Kanemori;H.Yanagi;T.Yura https://doi.org/10.1128/AEM.66.3.884-889.2000
  16. Foods Biotechnol. v.4 Expression of cyclodextrin glucanotransferase from Bacillus macerans in recombinant Escherichia coli Park,Y.C.;C.S.Kim;N.S.Han;J.H.Seo
  17. J. Biol. Chem. v.263 Expression of soluble and fully functional ricin a chain in Escherichia coli is temperature sensitive Piatak,M.;J.A.Lane;W.Laird;M.J.Bjorn;A.Wang;M.Williams
  18. FEBS Microbiol Lett. v.159 Overproduction of β-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES Sachiko,M.;Y.Yu;S.P.Singh;J.D.Kim;K.Hayashi;Y.Kawata
  19. Appl. Environ. Microbiol. v.57 Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli Standberg,L.;S.O.Enfors
  20. Proc. Natl. Acad. Sci. USA v.91 The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-Dnak, DnaJ, and GrpE Szabo,A.;T.Langer;H.Schroder;J.Flanagan;B.Bukau;F.U.Hartl https://doi.org/10.1073/pnas.91.22.10345
  21. Appl. Biochem. Biotechnol. v.66 Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli Thomas,J.G.;A.Ayling;F.Baneyx https://doi.org/10.1007/BF02785589
  22. Protein Expression Purif v.22 Expression of active hman C1 inhibitor serpin domain in E. coli Lamark,Y.;M.Ingebrigsten;C.Bjornstad;T.Melkko;T.E.Mollnes;E.W.Mielsen
  23. Curr. Opin. Biotechnol. v.6 Effects of over-expressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli Wall,J.G.;A.Pluckthun https://doi.org/10.1016/0958-1669(95)80084-0
  24. Cell v.83 Mechanism of GroEL action: productive release of polypeptide from a sequesterd position under GroES Weissman,J.S.;C.M.Hohl;O.Kovalenko;Y.Kashi;S.Chen;K.Braig;H.R.Saibil;W.A.Fenton;A.L.Horwich https://doi.org/10.1016/0092-8674(95)90098-5
  25. Cell v.84 Characterization of the active intermediate of a GroEL-GroES -mediated protein folding reaction Weissman,J.S.;H.S.Rye;W.A.Fenton;J.M.Beechem;A.L.Horwich https://doi.org/10.1016/S0092-8674(00)81293-3
  26. FEBS Lett. v.350 Inclusion body formation by interleukin-1β depends on the thermal sensitivity of a folding intermediate Wetzel,R.;B.A.Chrunyk https://doi.org/10.1016/0014-5793(94)00775-6
  27. J. Biol. Chem. v.268 Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase Ziemienowicz,A.;D.Skowyra;J. Zeilstra-Ryalls;O.Fayet;C.Georgopoulos;M.Zylicz