DOI QR코드

DOI QR Code

Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity

수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동


Abstract

Dynamic analyses were carried out to study the seismic response of high-rise steel moment-resisting frames in sixteen story buildings. The frames are intentionally designed by three different design procedures; strength controlled design. strong column-weak beam controlled design. and drift controlled design. The seismic performances of the so-designed frames with vertical mass irregularities were discussed in view of drift ratio. plastic hinge rotation, hysteretic energy input and stress demand. A demand curve of hysteretic energy inputs was also presented with two earthquake levels in peak ground accelerations for a future design application.

고층의 강 모멘트저항골조에 대한 지진 응답을 살펴보기 위해서 동적해석을 실시하였다. 구조물은 세가지의 다른 설계절차로 의도적으로 설계하였고 그 세가지의 개념은 강도 지배설계, 강기둥-약보 지배설계, 횡변위 지배설계이다. 그렇게 설계한 구조물이 각각 질량비정형이 존재하도록 하여 횡변위, 소성한지, 이력에너지 입력 및 요구응력에 대해서 토론하였다. 미래에 설계에의 응용을 위해서 최대 지반가속도로 표현한 두 등급의 지진 하중을 이용해서 이력에너지 입력요구 곡선을 제시하였다.

Keywords

References

  1. UBC-Uniform Building Code, International Conference of Building Officials, Whitter, California, 1997.
  2. FEMA 274, NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, FEMA, 1997, pp. 5-10.
  3. Uang C-M. et al., "Seismic response of an instrumented 13-story steel frame building damaged in the 1994 Northridge earthquake," Earthquake Spectra, Vol. 13, No. 1, 1997, pp. 131-148. https://doi.org/10.1193/1.1585935
  4. Kuwamura, H. and Galambos, T. V., "Earthquake load for structural reliability," J. of Structural Engrg., ASCE, Vol. 115, No. 6, 1989. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:6(1446)
  5. Akiyama, H., Earthquake-resistant Limit State Design for Buildings, Univ. of Tokyo Press, 1985.
  6. Valmudnsson, E. V. and Nau, J. M., "Seismic response of building frames with vertical structural irregularities," J. of Structural Engrg., Vol. 123, No. 1, 1997, pp. 30-41. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:1(30)
  7. Chopra, A. K., Dynamics of Structures - Theory and Applications to Earthquake Engineering, Prentice Hall, 1995, pp. 264-265.
  8. Mahin, S. A. and Bertero, V. V., "An evaluation of inelastic seismic design spectra," J. of Structural Div., ASCE. Vol. 107, No. 9, 1981.
  9. Uang, C-M and Bertero, V. V., "Evaluation of seismic energy in structures," Earthquake Engrg. and Structural Dynamics, 1990, pp. 77-90. https://doi.org/10.1002/eqe.4290190108
  10. Fajfar, P. et al., "On the energy input in the structures," Pacific Conference on Earthquake Engrg., New Zealand, 1991, pp. 81-92.
  11. Nigam, N. C. and Jennings, P. C., SPCEQ/UQ, California Institute of Technology, CA, June 1968.
  12. Tsai, K. C. and Li, J. W., DRAIN2D+ A General Purpose Computer Program for Static and Dynamic Analyses of Inelastic 2D Structures Supplemented with a Graphic Processor, Report No. CEER/R83-03, Center for Earthquake Engrg. Research, National Taiwan Univ., 1994.
  13. Strand7, G+D Computing, Sydney, Australia, 2002.
  14. Zarah, T. F. and Hall, W. J., "Earthquake energy absorption in SDOF structures," J. of Structural Engrg., ASCE, Vol. 110, No. 8, 1984, pp. 1757-1772. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1757)
  15. Leger, P. and Dussault, S., "Seismic energy dissipation in MDOF structures," J. of Structural Engrg., ASCE, Vol. 115, No. 9, 1992. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)
  16. LRFD, Manual of Steel Construction Load & Resistance Factor Design, Volume I, Second Edition, LRFD-AISC, 1995.
  17. Choi, B. J. and Shen, J. H., "Empirical hysteretic energy with strength, strength and drift, and SCWB designs using steel moment resisting frames," The Structural Design of Tall Buildings, Vol. 10, No. 1, 2001. https://doi.org/10.1002/tal.167