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Abstract

The purpose of this paper is to analyse the manager’s policy to maximize the profit
in a multiple-server queueing facility with a limited queue capacity. We assume that
the level of advertizing effects on the arrival rate of customers to the facility. The
model without 'word of mouth effect’ is assumed that the arrival rate is independent
on the quality of service level. We estimate the service quality by the balking rate of
customers from system. We extend this to the model with 'word of mouth effect’.

To achieve the maximum profit, the most important factor is the considerably high
utilization of facility for both models. Given service rate, we should maintain an
effective arrival rate to some extent. To this end, among the available options, an
increase of advertizing effort is more desirable than reducing the fee if the service
value of customers remains unchanged.

We also investigate whether the variability of service time has a significant impact
on determining the optimal policy. The cost of service variability is not so expensive
as that in a single server model due to the reduced variability of service times in a
multiple-server model.

Key Words; Multiple-Server Queueing Model, Word of Mouth Effect, Advertizing, Balking
Rate, Optimal Policy.
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1. Introduction

In this consider a
multiple-server facility with limited queue
capacity and a situation where a manager
decides on the optimal utilization of a
facility. Customers arrive at the facility to
get a certain benefit from the service, but
they encounter the annoyance from waiting.
Arriving at the facility, they observe the
service fee and the existing queue length,
and decide whether or not to join. For
instance, customers arrive at the game
room, observe the fee and the number of
players and then decide to join the queue to
play.

A number of studies have analyzed
control problems associated with congestion
in service facilities. Naorl[4] first studied the
situation where arriving customers are
admitted or not based on the observed
queue length for a single-server facility. A
similar modeling approach has been
extended by various others. Stidhaml[6]
introduced a fixed reward for each job
passing through the system and a waiting
cost, and studied the optimal control of
admission to a queueing system. Dewan and
Mendelson[2] focused on an optimal pricing

paper, we

and capacity decision for a service facility
where user delay cost function is nonlinear.
Van Ackere and Ninios[7] considered the
case where the arrivalrate is determined by
the level of advertising and the 'word of
mouth’ effect. They analysed the manager’s
policy maximizing the profit for a single
server facility. Atkinson[1l] re-analyzed Van
Ackere and Ninios's model using queueing
theory and numerical optimization when
service time has an Erlang distribution.

This research studies the optimal
strategy for a multiple-server queueing
model with advertising and balking. This
extension of the model
developed by Van Ackere and Ninios[7] to a
facility. To attract
customers, manager uses advertizing, which
may influence the arrival rate to a facility.
Also the price of entering may determine
whether or not customers join the queue.
Thus, in our model, a manager’'s choice of
advertising level and entrance fee may
effect on the utilization of facility. If a
manager advertises too much to attract
customers, this may create congestion and
many customers will balk from the system.
Consequently a bad reputation will cause
future advertising less effective(’word of
mouth’ effect). Usually the effectiveness of
advertizing will be evaluated by the fraction
of balked customers. On the other hand,
lower entrance fee may attract
customers to join the facility, so it will
increase the utilization of system, but it
may reduce the total profit.

In such a situation, we try to find the
manager’'s profit maximizing policy for

model is an

multiple-server

more

determining the advertising level and the
price of entrance in a steady state situation.
We also investigate the influence of the
variability of service time on system
utilization. We explore that to what extent,
the manager’'s optimal policy depends on
the variation of service time. For these
purpose, we developed simulation models to
study optimal policies which determine
advertizing expenditures and fees in various
cases of service times.
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2. Model with Balking and Advertising

We suppose that customers arrive at the
system according to a Poisson process with
arrival rate .A. The manager can decide an
expenditure of advertising which influences
the arrival rate. We consider two cases: (a)
in the first case, the arrival rate is only
determined by an advertizing expenditure,
A and we assume that the arrival rate is a
linear function of advertizing, A=cA(c is a
constant), (b) secondly, we extend the first
case to a model incorporating word of
mouth effect. For a given fee F, high level
of advertizing induces more customers to
arrive at the system, which will result in
the increased fraction of balking customers
system. It finally causes a bad
reputation for the facility and makes future
advertizing less effective. The effectiveness
of advertizing level is assumed to be
measured by a function of service quality.
Specifically, in the second case, we assume
that the effective arrival rate is reduced by
the balking probability of customers from
system.

When customers arrive at the system,
they observe the queue length, and entrance
fee and then decide whether or not to
participate in queue for services. We
assume that a service is worth a value, V
for all customers. We also assume that the
waiting cost of a customer is linear in the

from

waiting time, W We consider that the
facility has m identical servers whose mean
service rates are all equal to ux To

standardize waiting cost per time unit in a
similar way of Van Ackere and Ninios [7],
we let the waiting cost per time unit be
equal to x. Then a customer’s valuation of

V—F—uW If an
customer perceives % persons
including himself in the system, he might

the service is equal to
arriving

expect to spend kA/mp time units in the
system. Therefore he will join the system if

V—F— pk/mu=V—F—k/m=0. (1)

This implies that the manager’s choice of
F implicitly determines the maximum queue
length, K=m(V—F) (K=1). Thus, for given
V and F, an arriving customer will join
the queue if he observe the queue length
less than m(V—F).
away from the system.

The system manager tries to determine
the variables A and F which yield the
maximum profit per time unit. We let Pk
denote the balking probability of customers
from system when arriving customers find

Otherwise he turns

K customers in the system. For a model
without 'word of mouth effect’, the profit
function per unit time is given by as
follows:

Profi(1) = M1—-PpF—-A, (2)

where the first term means the earning
from customers who join the queue, which
is the arrival rate times fraction of
customers served times fee per customer;
and the second term simply denotes the
advertizing expenditure. We note that the

Pg is a non-linear function of A and F.

Plugging the relationship A=cA into (2)
yields
Profi1) = A1—PpF—Ai/c, (3)
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constant implying the
coefficient of advertizing expenditure on
arrival rate. Next we consider the profit
function for the model including the word of
mouth effect. In this case, the arrival rate is

where ¢ is a

reduced by the amount of Pk, which is due
to the bad reputation from customers
balking from the system. We assume that
the effective arrival rate to the facility is
equal to A=cA(l—Pg). Similarly in
developing the equation (2), we present the
objective function as follows:

Profi2) = A(1—PpF—A
= (1—-Pp’AF—A. (4)

If we substitute for A into the above
equation, then we have the equivalent profit
function as follows:

Profi(2) = [A(1—PpF—A/(1—Ppllc. (5)

For exponential service time, we can find
the balking probability based on queueing
model M/M/m/K. Using this probability, we
can obtain the manager’'s optimal policy
numerically. However, in cases of general
service—time distributions, since obtaining
the balking probability analytically is not
available, analyzing this system through

simulation is recormmended.
3. Simulation Model

We develop a simulation model to study
the manager’'s policy for determining the
advertizing level and service price in cases
of non-exponential service times. Since we

difficulties in
obtaining the balking rates of customers
from system for non-exponential
time, we estimate them through simulation.
To wvalidate a simulation
model model, we
simulate the model with the exponential
service time, and we compare simulation
results with analytical ones. To this end,
we build the simulation model of  the
queueing  system  with
limited capacity by using simulation package
SLAM II[5]. We first present the analytical
and simulated results for exponential service
times. Based on these results, we then
conduct a set of simulation runs to
investigate the effect of wvariability of
service-time on the profit functions for
cases that service times have the general
distributions.

have some analytically
service

corresponding
against an analytical

multiple-server

3.1 Simulation Model with Exponential Service
Time

We consider the multiple-server queueing

model with number of identical servers
m=4 and entrance fee F=8. A service
time of each server is exponentially

distributed with mean service rate pg=1.
To all customers, the service from system
is worth of the wvalue V=10 and they
arrive at the system according to a Poisson
process with arrival rate A. For given
V=10, F=8 and m=4, we see that the
maximum capacity of queue is equal to
K=8. Based on queueing theory [3], we
can analytically calculate the balking

probability of customers, Px as follows:

Py=Py(A/ "1/ m!(1/m)*~ ™ (6)
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where
Po=L B R+ 3 W™ Hmt] ™

For 10 different values of A(=1, 2, .., 10),

we compute the Pk by the equation (6).
Under the same conditions as given in
the analytical model, through the simulation

runs, we estimate the Pk as the ratio of
number of customers balked to sum of
number of customers both balked and
serviced. We stop simulation runs when
number of customers serviced reaches
10,000. Figure 1 graphically shows the
analytical and simulated results of the
balking rate Px for #=1, and an arrival
rate A ranging from 1 to 10 by
increasement of 1.
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Figure 1. Analytical and Simulated Values
of Pxg

The balking rate seems to be a little
underestimated in the range of A4 from 1 to
8. As we see in Figure 1, the lower A
tends to show the worse estimation. This
result is similar to that obtained by Van
Ackere and Ninios for a single-server case
[1). As they noted, this discrepancy is not a
serious problem because (a) the large
percentage error has little meaning as the

true values of Pk are close to zero, and (b)
the profit function is maximized for a not
small values of utilization factor p=A/mg.

Next we compute two profit functions,
Profif(1) and Profi2) by use of analytical
method as well as simulation runs. We may
assign different values for ¢ in (3) and (5),
but simply, we set ¢ equal to 1 as Van
Ackere and Ninios’'s model since this
research focuses on extending of a
single-server model to a multiple-server
case, and investigating shapes of profit
functions. In estimating the unit time profit
functions (3) and (5) through simulation,
we calculate them as follows:

no_of customers serviced

Profi1) = simulation duration
_ _total no of customers )
simulation duration °
Profi2) — —12 of customers serviced F

simulatin duration
_ _total no of customers 1
simulatin duration 1— Pg ®

Figure 2 and 3 (4 and 5) present the
analytical and simulated profits of model
without (with) the effect of word of mouth

for different values of the fee F,
respectively.
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Figure 2. Analytical Profit(1) for several
values of F
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Figure 3. Simulated Profit(1) for several
values of F

From Figures 2 and 3, we see that
analytical and simulated profit functions are
similar, and both functions have the same
A=6, F=8. However, the
optimal values of simulated profit function
is a little higher than that obtained by the
analytical method. We consider that this is

optimal policies:

due to lower estimation of Px at A=6 (see
Figure 1).
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Figure 4. Analytical Profil(2) for several
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Figure 5. Simulated Profit(2) for several
values of F

For the model with the word of mouth
effect, two profit functions also show
similar trends and their values are lower
than those without the word of mouth
effect. Figure 4 and 5 show that, as the
arrival rate increases, the increased balking
rate gives customers a bad reputation, and
decrease profit substantially in case that A
is higher than 8  The optimal policies of
analytical and simulation method are F=8§
and A=5, and F=8 and A={4,
respectively. The profits from simulation run
is a little higher than those of analytical
method. Similarly to the previous case, we
consider this is because of underestimation

of Pk in simulation run.

3.2 Experiment on Simulation Model with
General Service Time

We conducted a large set of simulation
experiments on a queueing model M/G/m/K
with number of indertical servsers,
to evaluate the manager’'s policy for
determining the advertizing level and service
fee for general service-time distributions,
and to investigate their effect on the profit.
Specifically we consider 4  different
distributions of service times, S whose
expectations and variances are follows:

m=4,

(1) Deterministic: E(S)=2, and Var(S)=0,
(2) Erlang: E(S)=2, and Var(S)=2,
(3) Gamma: E(8) =2, and Var(S)=4.
(4) Gamma: E(S)=2, and Var(S)=38.

Under the condition that V=10 and
F=9, Figure 6 and 7 present the simulated
profits based on 4 different service-time
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distributions for the model without and with
word of mouth effect, respectively. Table 1
and 2 summarize the optimal policies and
operating characteristics of models with and
without word of mouth effect for considered
distributions. In Table 2, the value of
advertizing expenditure A is computed by

the equation of A=A4/(1— Pg),
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Figure 6. Simulated Profi(1) for 4
service-time distributions.
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Figure 7. Simulated Profi2) for 4
service—time distributions.

Table 1. Optimal policies for the model
without word of mouth effect

Waiting | Queue
Distributi Profit
istribution Al Pgl| F Time | Length ofil

Deterministic 2510229 9 1.188 2.326 15.1

Erlang(1, 2) 3 10347 9 1.382 2674 144

Gamma(2, 1) 3 10367 9 1.350 2.596 143

Gamma(4, 0.25) 3 |o372) 9 1.270 2423 14.1

Table 2. Optimal policies for the model with
word of mouth effect

Waiting | Queue
istributi Profit
Distribution Al P x| Al F Time |Length 0

Deterministic 2510229 )324] 9 1188 | 2326 | 143

Erlang(1, 2) 2510248 1332| 9 1152 | 2148 | 135

Gamma(2, 1) 251026613411 9 1135 | 2109 | 133

Gamma(4, 0.25) | 2510274 [3.44] 9 1.091 | 2.005 | 13.1

4. Discussion of Simulation Resuits

We first provide a summary of
simulation results for the model without
word of mouth effect. The optimal policy
for deterministic service time is given by
F=9 and A=2.5, and the optimal policies
for Erlang(l, 2), Gamma(2, 1) and Gamma(4,
0.25) service times are all given by F=9
and A=3. The values of profit functions
are in the range from 14.1 to 15.1. As we
expected, the larger the variance of service
time is, the more customers balk, and the
less profit we have. In a deterministic
service time case, a less advertising level
achieves more profit than profits obtained
from three other service times. We see that
the variance of Gamma(4, 0.25) is two times
and four times of that of Gamma(2,1) and
Erlang(1,2), respectively, but the differences
between two optimal profits are not
much(0.3 and 0.2, respectively). For a
multiple-server system, variance is not so
serious as that in a single-server system.
We consider that this is due to the reduced
variability of service distribution for multiple
servers.

In case of
distribution,

Gamma(4, 0.25)
increase the

service

if we advertising
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level by the amount 05 (from 3 to 35), for
Instance, to compensate the service variability,
the profit decreases from 14.1 to 14.0. Thus
the advertising effort to increase the arrival
rate is not always desirable even though the
variability of service time is large.

Given the fee and advertising level, as
the variability of service time increases, the
balking rate increases and thus, effective
arrival rate decreases. Therefore an increase
in advertising to boost arrival to some
extent seems desirable. In our example,
compared to service rate #(=0.5), the
optimal arrival rate A is considerably high.
We note that the system utilization factor
p=A/mu=15 for Erlang and Gamma
distributions. If we increase the arrival rate
from 3 to 4, the balking rate of customers
from system increases from 0.372 to 0513
in Gamma(4, 0.5) case, and hence the profit
drops from 14.1 to 13.6. Similar results are
observed for other cases.

Secondly we discuss simulation results
for the model
effect. The optimal policies for all cases are
given by F=9 and A=2.5. Compared with
model without word of mouth effect, the
optimal policy for the deterministic case is
same, but the optimal policies for three
other distributions are given by the same
fee F=9, and a little less arrival rate
A=2.5. We consider that this result is
reasonable because of word of mouth effect.
Except deterministic service time
changing A from 3 to 2.5 shows the
decrease of balking rate of around 10%, and

including word of mouth

case,

thus increasing balking rate causes
advertising to attract customers less
effective.

Throughout two models with four

different service distributions, we have the
optimal policies given by F=9 and A4 in
the range from 25 to 3. We have several
available options to achieve the maximum
profits: (a) change the advertising level, (b)
change the fee, and (c) use a combination
of (a) and (b). Simulation results from our
example suggest that a considerable
advertising effort to boost customers is an
important factor to achieve the maximum
profit. Even in the model allowing the word
of mouth effect, the utilization factor is 1.25.
We note a similar result given in a single
server model [7]. For maintaining an arrival
rate to some extent, we may increase the
advertising expenditure, reduce the fee, or
use both options. If the service value of
customers remains unchanged, an option of
reducing the fee is not desirable. Reduced
fee induces more customers to join the
system (increased queue length and waiting
time). But it also results in more congestion
of system and reduces the earning from
each customer. Totally, an effect of reduced
fee to the profit
example.

Finally we note that the profit decreases
as the variance of service times increases
for both models. This is the same result as
obtained from a single server system. But
the cost of service variability is not so
expensive as that in a single server model.
We conjecture that this is due to the
reduced variability of service times when
multiple servers serve the customers.

is not much in our

5. Conclusions

Our purpose is to analyse the manager’s
policy to maximize the profit in a multiple
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-server queueing facility with a limited
queue capacity. In determining the optimal
policy, the most important factor is the
considerably high utilization of facility.
Hence service rate, we should
maintain an effective arrival rate to some
extent. Among the available options for this,
an increase of advertizing effort is more

given

desirable than reducing the fee if the
service value of customers remains
unchanged.

For the model with word of mouth
effect, an increased balking rate causes to
drop the future arrival rate of customers,
and it will reduce the effectiveness of
advertising. Even in this case, advertising to
boost arrival to some extent seems
desirable. In order to have any concrete idea
on the optimal utilization factor, we need a
large set of simulation experiments on
various systems. Our simulation results and
study of Van Ackere and Ninios suggest
the optimal ‘value of utilization may be in
the range from 1 to 15. in many real
systems. We also observe that the
variability of service time has an impact on
determining the optimal policy. However, the
cost of service variability is not so
expensive as that in a single server model.
We consider this is due to the reduced
variability @ of service times in a
multiple-server model.

Despite of limited simulation runs on
specific models, we expect this study may
be useful in determining the optimal policy
for a multiple-server facility with
advertizing and balking.
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