olF HolE Mol A2FE A%
as3q o8y Fa71Y

An Efficient Altruistic Locking Protocol
for the Mobile Transaction Management System

Hyeok Shin Kwon® - Se Yoon Kim"* - Ung Mo Kim*™

Abstract

We propose an advanced transaction scheduling protocol to improve the concurrency and to guarantee
the mobility for the mobile database management systems. Mobility, portability, and wireless link in mobile
computing environment can cause certain drawbacks, and thus it is more difficult to solve the concurrency
control problems. However, a locking scheme should be used to guarantee the data consistency and to
prevent the data conflicts. It is well known that data consistency is guaranteed by standard transaction
scheduling schemes like two-phase locking (2PL). It has two of operation, lock and unlock. But 2PL does
not give solution for mobile system. Altruistic Locking (AL) and classifying transactions, we adapt, can
give solution for the previous problems. AL, as an advanced protocol, has attempted to reduce delay effects
associated with lock release moment by the use of donation. In this paper, we extend those approaches
and classify the transactions to reduce delay effects of short-lived transaction caused by long-lived
transaction. In addition, we show efficient solution for the case of disconnection occurrence. Our protocol,
namely, Mobile Altruistic Locking (MAL) is shown to be efficiently used in order to reduce delay effects
and to guarantee database consistency in a state of the slippery connection in mobile database systems.

Keywords : Mobile Transaction, Locking Protocol, Altruistic Locking, Concurrency Control

8+ : 20039 108 20¢ Z2AMEEY : 20034 128 22
% 2 o7)8} T HTHE SAKYARS| ATHZ SHEYS.

* MTBOST HEEATHY HRETEDY AL
© MPBOSD FREATLE ARHIHY 1

54 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

1. Introduction

Recent advances in information technology
have provided portable computers with mobile
interface that allow networked communication
even while users are mobile. Low bandwidth,
higher error rates, and more frequent discon-
nection characterize mobile communication [1].
So we must guarantee that executing transac-
tions can quickly access databases with other
conflicting transactions. We also must guar-
antee that they are always in a consistent state
without losing correctness of locked data
items, even in case of disconnection by hand-
off or low bandwidth. It is well known that
data consistency is guaranteed by standard
transaction scheduling schemes like 2PL(two-
phase locking). AL(Altruistic Locking) is ba-
sically an extension of 2PL in the sense that
several transactions hold locks on an object
simultaneously under certain conditions. How-
ever, these locking protocol reveal inefficiency
in mobile computing environment when dis-
connection occurs because of unilateral abort,
unilateral commit by fixed host or factors of
mobile environment. MAL(Mobile Altruistic
Locking), our protocol, is based on AL, MAL
has some new methods, namely, restart man-
agement, management of classified transac-
tions, and expansion of AL for mobile trans-
action management are additionally used in
order to improve the concurrency and satisfy
serializability in mobile computing environ-

ment.

2. Related Works

2.1 Mobile System Architecture

Advances in computing and networking
technologies have made extensive use of por-
table computers possible and enabled on-line
information sharing via wireless communica-
tion channels. This new computing paradigm,
called mobile computing, allows users to per-
form on-line transaction processing indepen-
dent of their physical locations [4]. Generally,
such a mobile computing architecture includes
two distinct sets of entities basically : Mobile
Hosts (MHs) in the wireless network and
Mobile Support Stations (MSS) in the wired
network <Figure 1>. The MSSs are steadily
connected to the wired network and some of
devices, called Access Points (APs), are aug-
mented with a wireless interface to commu-
nicate with the MHs. The MHs can dynam-
ically move within a radio coverage area called
a cell or between two cells while retaining their
network connections. Normally, a single AP is

able to support a number of MHs, and is en-

Legend
MODBMS :
Mobile Database
Management System
MH : Mobile Host
AP : Access Point
FH(MSS) : Fixed Host
{mobile support station)

(Figure 1> Mobile System Architecture

ANY Al

o) dolEdolx AAS A AEHY oletd AF7Y 55

gaged to provide services such as data passing
and message interpretation to the MHs posi-
tioned only within its cell.

MSS is responsible for keeping track of
addresses of MHs to detect the geographical
location where the MH is located. After a mo-
bile host requests to process a transaction to
a fixed host, then the fixed host which is
connected to database begins to execute the
operations of the transaction. In replicated mo-
bile database environments, multiple MHs
maintain replicated data and they use rep-
lication control tools for data synchronization.
In the concurrency control view, this situation
makes overhead of system and is not good for
effictent processing. There could be frequent
disconnections and abort behavior caused by
low bandwidth, slippery connections and fre-
quent movement. That frequently causes roll-
back actions. If the disconnection occurs when
the transaction connect to DBMS to execute
some operations, it has to restart operations
from first operation in traditional protocols like
2PL. That causes inefficiency of concurrency
control. Our proposal solves these problems by
using the altruistic locking scheme.

2.2 Altruistic Locking

AL is a modification of 2PL under certain
conditions. AL provides a third concurrency
control operation, called Donate, along with
Lock and Unlock. Donate operation is managed
to let scheduler know that the long-lived
transaction, owner of the object, does not need

to access that object which was no longer

required [5]. Several rules control the use of
the donate operation by data management sys-
tem. Transactions can only donate objects that
they currently have locked. However, they
may not access any object that they have
donated. A well-organized transactions must
unlock every objects that it locked, regardless
of whether it donated any of those objects.
Transactions are never required to donate any
objects ; donations are always optional. Donate
operations are beneficial since they can permit
other transactions to lock the donated object
before it is unlocked. To favor any other short
transactions, they could be allowed to access
data that are still being grasped by a certain
long transaction yet to be committed. In AL,
this way of endowment is established by
declaring a set of data to be consigned, wake,
by long transactions.

Legend-
T1 : Long- Lived Transaction

T2 : Short- Lived Transaction

: Data item praviously used
and donated by T1

T

: Data item currently being used
by T1

: Data ltemn which is yet to
be used by T1

T2

AU

: Data item which shall never
be used by Tt

Execution of T2 with One

Long- Lived T

<Figure 2> Altruistic Locking Protocol Architecture

See the <Figure 2>. T1 is LLT(long-lived
transaction) and T2 is SLT(short-lived trans-
action). T1 locked object A, B, C, D, E and F.
T1 previously used data item A, B, C and
donated successfully. Now T1 is being phase
of execution with D. T2 request A and C to
lock. In 2PL, that is not allowed by scheduler
and T2 has to wait in wait-queue until T1

56 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

release all objects locked. However, the re-
quest to A and C by T2 can be allowed in AL
by using donate operation. In AL, T2 is not
allowed to access object G or H and it can
cause some of delay. In MAL, that is allowed
under certain condition by using classifying
the transactions. That could reduce delay
effects. These contents are going to mention
in section 3.

3. Proposed Protocol

3.1 Basic Concepts

In the mobile environment, the concurrency
control is very important to guarantee consis-
tency and efficient processing of transactions.
To solve these problems, we took AL protocol
that is more efficient to process transactions
than 2PL. It can reduce delay effect by use
donate operation. However, there are cascade
roll-backs when the long-lived transaction is
aborted and that can not give the guarantee
necessity of commit in the mobile environ-
ment. More situation than these effects are not
enough to appropriate to the mobile system, so
we extended AL and classified the transac-
tions to give more chances to lock objects early
than AL. In the disconnections occur, we use
system log file. This is good for restart trans-
actions to continue at the end of the execution
not at the first operation. The AL assumes that
the long-lived transactions eventually commit.
This assumption is not appropriate to mobile
system, because disconnections could occur

frequently in this environment. So, the AL has

to be modified suitably. To prevent that trans-
actions which have some of donated objects
are aborted frequently, we use the concepts of
strict 2PL and modified commit point of time.
In addition, we lay emphasis on the recovery
of aborted transactions. To make good efficient
concurrency control protocol, we classified the
transactions by using character of transaction.

3.2 Assumptions

To describe our protocol, Mobile Altruistic
Locking (MAL), in detail, the following as-
sumptions are made mainly with regard to
transaction management principle in mobile

environment.

(1) Deadlock Handling : If a transaction
happens to fall into deadlock situation, the
transaction will be eliminated by using a
certain deadlock timeout scheme.

(2) Transaction Priority : A restarted trans-
actions is vested higher priority than any
other transaction, say, either short-trans-
action or long-transaction.

(3) Transaction Restart - All aborted trans-
actions can be restarted only when user
has the aborted transaction issue a request
of re-execution.

(4) Marking Transaction : All transactions
has own information about what opera-
tions will be executed and what objects
will be used.

3.3 Locking Protocol

We applied AL(altruistic locking) protocol

A1 Als

°o|% doleMo| AARE A BLHQ o8y FE7Y 57

because that can make transaction which used
donated objects can commit earlier than donat-
ing transaction do without violating. However,
we reorganized that to proper to mobile envi-
ronment. We explain out proposed protocol in
this section. What concepts are used and how
to be processed transactions, we will discuss.

3.3.1 Reorganizations of AL and classify the
transactions

We use marking transaction. The marking
transaction descries it has own information of
what data item will be locked and used. So,
if the transaction occurs, first of all it locks
all of objects needed and then executes op-
erations and finally unlocks all locked objects.
While the transaction execute operations with
objects sequentially, if the transaction will not
be more use some of previously used objects,
that objects could be donated. And then, if
some transaction use this donated objects, the
information of this order remains on the log
file. To guarantee serializability of transaction
when the disconnection occurs, we reorganized

rule.

1) Transaction which has donated objects is
only allowed to lock request to some objects
which are not in the donating transaction’s
wake when the transaction’s request opera-
tion is read. Donating transaction means the
transaction which already used some ob-
jects and donated. This is a method for re-
covery in mobile computing.

2) If the read-only transaction is using some
objects and other transaction request to

same objects with write operation, the sys-

tem creates replica for requesting transac-
tion to be allowed to access without delay.
On the other hand, if the other transaction
sends request with read operation, it is
allowed because of public-lock. Public-lock
means the lock which is made by read
operations from some transactions. Qur
protocol, MAL, can be explained as follows.

(1) Management of disconnection

In the mobile environment, the reorganized
policy to improve efficiency of transaction con-
currency control is needed to solve the problem
of inefficiency when transaction restarts from
disconnections or other causes. Suppose that
disconnection occurs while executing the op-
erations. Most of conventional locking pro-
tocols, such as 2PL, have to take an abort ac-
tion (e.g. roll-back) and then restart the pro-
cessing from state of the first operation.
However, in MAL protocol, that could restart
operations from state of disconnecting under
certain condition without roll-back operations.
Instead, the MAL protocol stores contents of
donated data items in a log file. Suppose dis-
connection was occurred while transaction
was processing with objects C in <Figure 3>.
System does not need do roll-back action
immediately because the transaction can do its
operation continuatively after restart. If other
transaction locked and used the donated ob-
jects A and B while T1 disconnected and re-
start after, that is not problem if the trans-
action could restarts from state of discon-
nection continuatively and then finally com-

mits successfully its operations.

58 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

Legend -

T1: LongLived Transaction

: Data ltem praviously used
and donated by T1

occurs during

: Data item currently being
'p‘:::;' data E used by T1

Q| ol s>

: Dats item which Is yet to
be usad by T1

Restart from
herel

S : Data item which shall
never be used by T1

<Figure 3> Processing of disconnected transaction

However, if other transactions locked and
modified the objects C and D which were
locked but were not executed until discon-
nection occurred by TI1, the T1 could not
obtain locks and could not restart continua-
tively. So, in this case, the transaction T1 has
to roll-back and restart from first operation
unavoidably and system informs that to other
transactions which are using or used and
committed A and B.

Finally, if the transaction is restarted with-
out any violating, it can do continue processing
with the objects at disconnection occurred.

(2) Classify transactions & create replica

We classified transactions to two. One is
read-only transaction and the other is write
transaction. The read-only transaction is a
transaction which requests objects only with
read operations. The other has read and one
of write operations at least to objects. Assume
the lock holder is read-only transaction and
then lock requester transaction request to lock
same object with write operation, this request
can not be allowed until the lock holder unlock
all of its objects in 2PL. However, in our
proposal, MAL, that can be allowed by using
create replica. The replica is given to lock
holder transaction by system and original ob-

ject is given to lock requester transaction. So,
the lock request transaction can do his oper-

ation without waiting like T2 in <Figure 4>.

Legend-
T1: Long- Lived Transaction
T2 : Short- Lived Transaction

"""

H . Read- only transaction

e

I:, : Data ltem which s yet to
be used by T1

- : Data item which shali
never be used by T1

ol o| w| »

(Figure 4> The create replica

(3) Expansion of access control

As MAL is operated on the mobile environ-
ment, all of transactions must have ability to
do roll-back operations. In AL, the transaction
must follow the wake. That is, if the trans-
action used donated object by others, it could
use only donated object in the wake of do-
nating transaction. This restriction can pre-
vent cascade roll-back. However, we expan-
ded access allowance to ensure efficiency on
the situation of abort and roll-back with some
restriction. If the transaction wants obtain lock
to the object that is not in the donating
transaction’'s wake, only read-only transaction
can do. In the opposite direction, only read-
only transactions that already locked some
objects which is not using by any transaction
can obtain the locks which are donated by
other transaction.

In <Figure 5>, assume the T2 used B which
were donated already by T1 with read or write
operation. If the T2 want to continue pro-
cessing with data item E with write operation,
the request is not allowed. On the other hand,
if T2 is read-only transaction, the request is

AP A5

o} dolellolx NARE HE BEAHQ o5HH FAE7Y 59

read properly and it can be allowed. That is,
if the transaction which is using donated object
wants to access other objects which are not
in the wake, it is only allowed when the
request transaction is read-only transaction.
Assume T1 is aborted and it has to be roll-
backed, data item A, B and C are going to be
roll-backed. In this situation, data item E is not
necessary to be roll-backed because T2 use
that only read operation. So, although the
abort action occurs in the donating trans-
action, it doesn’t make problems in the sit-
uation that read-only transaction requests
locks. Also, T2 can donate E. <Figure 6> is
same as <Figure 5>,

5 Legend-
T : Long-Lived Transaction
T4 T2 . Shori- Livad Transaction
: Dats tem previousty used
C and donated by 71
gt < Data Rem currently Deing
T2 e} D I I used oy T1
- < Gate tom which is yot to
[T o
Canbe
allowed? < D1ata flem which shafl
never be used by T1

{Figure 5> Restriction of Processing for recovery 1

Lagend-
T4 : honp-Livad Trapsaction
T2 : Short- Lived Transaction
: Data em previousty used
and donated by T1

< Data {em currentiy being
usad by T1

Data iteim which {8 yet to
be used by T1

: Data item which shait
never be used by T

<Figure 6> Restriction of Processing for recovery 2

These restrictions can expand the scope of
AL and these property can prevent cascade
roll-back appropriately for recovery. We can
get more efficiency to have chance to obtain
lock than AL without cascading roll-back.

332 Operations of MAL

As the MAL is extension of AL, we clas-
sified transactions to two, read-only and write,
to increase degree of concurrency control and
recovery in mobile database system. We also
use replica under the certain condition and
guarantee efficiency of restart transaction. Qur
proposal reduces delay of transaction efficient-
ly. Let's see the <Figure 7>.

Legend-
, Tt:ionglived Transackion
i T2,73, T4 : Shot-Lived Transactian

§ :Read- only frapsaction
S

; Data tem previously usad
and donated by T1

......

: Data Rtera currantly

F
- f
---------------- . . [::] being used by T1
: Cata ftsm which is yet
tobe used by TI o T2

) ‘ + Data Hem which shalt .
! k raves by usss by T3 72
*Write Ti
““““““ “* : Resd Transaction

Processing of classified transactions & create replica

Figige 7> Proposed Protocol (MAL) Architecture

Suppose that a long transaction, say, T1
attempts to access data items A, B, C and E
in an orderly manner. Note that data items D,
F, G and H shall never be accessed by T1.
Presume that Tl has already locked and
thereafter donated A, B and C. Now T1 is
supposed in the stage of accessing E. In the
case of ZPL, transaction T2, T3 and T4 should
have delay. However, in MAL, T2 could for-
tunately be allowed to access A and C without
any delay because that objects are donated
objects by T1. T3 also could be allowed to
access B and G without any delay because
object B is a donated by T} and T3 is read-
only transaction. T4 could be allowed to access

60 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

G and H without any delay because object G
was locked with read-only by T3 and that time
T4 want to use that with write operation, so
system create replica for T4 and give that to
T3. Finally, all of the transactions in figure 7
can do their operations simultaneously without
delay.

Suppose the disconnection occurs when T1
is in processing of E. If the transaction want
to restart and data item E are not used by other
transaction (situation that lock is read and
request is read on E is not problem as a matter
of course) between disconnecting time and
restart time, all of transactions do not cause
problems just like disconnection was not oc-
curred. However, if T1 has to roll-back, object
G and H is not targets of abort action in MAL.
Only system informs abortion to T2 and T3
without roll-back action of them.

In the view of mobile system architecture,
mobile host which has already requested
processing of T1 tries to re-connection. After
re-connection, a scheduler in fixed host exam-
ines the requested data items, A, B, C, E and
the donated data items, A, B, C which have
been stored in log file. Data manager check
where other transactions worked with object
E between the times of disconnection occurs
and restart or not. If E was not used by other
transactions, it can do restart. Donated data
items, A, B and C do not affect final value
executed by T1 at all, if the transaction can
restart. In other words, in this case, mobile
host that has requested T1 is always guar-
anteed to get correct values of A, B and C
without roll-back action. This is due to that

both final results of T1 solely without any
other intervening transactions and final results
of T1 which donated objects A, B and C and
restart from E with intervening transactions
simultaneously produces always the same
value. Thus, T1 can proceed from E contin-
uwously without having to restart from A.

34 Scheme of MAL Protocol

MAL algorithms can be pseudo-coded as

follows.

Algorithm (MAL)

Input : SRT, LLT
/* SRT : Short lived transaction, LLT : Long lived
transaction */

/*++ The part of management of restart **+/
BEGIN
IF (SLT is restart transaction) THEN
ReplyExam = ScheduleExam(SLT);
/* Check SLT could violate serializability or not
from using log-file */
IF (ReplyExam = 0) /* SLT will not violate
serializability */
SLT.Pri = HP ; /* Give high priority to SLT #/
ScheduleRestart(SLT) ; /* In this phase,
scheduler locate SLT
front line of queue */
ELSE
SendRes(SLT) ; /* Order SLT to restart from first)*/
Return() ;
ENDIF
ENDIF
END

/sx+xxxx The part of lock management s*s+sxs/
BEGIN
FOREACH SLT /*Whenever transaction is generated*/
FOREACH SLT.TargetObject
/* Number from number of object which
transaction wanted */
IF (SLT already has some objects) THEN /x1%/

A1E AlS

olF wolEuolx A2HE A £ o8 8714 61

IF (SLT does not use yet objects was used by
any LLT) THEN /% 2 %/
IF (Object.Lock = 0) THEN /* 3, The object was
not locked by some */
Reply : = ScheduleLock(SLT)
ELSE /* The object was locked by LLT */
IF (Object.Donated = 1) THEN /* 4, The
object was donated by some LLT #*/
IF (SLT is read-only transaction) THEN
/%5 #
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 5 */
ELSE /+ The object was not donated */
IF (Object.Operation = 0) THEN /* 6, The
object was locked by read %/
IF (LLT is read-only) THEN /* 7 %/
IF (SLT want read lock) THEN /* § */
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleCreateReplica(SLT)
ENDIF /* End of 8 */

ELSE
IF (SLT is read-only transaction) THEN
9%
Reply : = ScheduleLock(SLT)
ELSE"

Reply © = ScheduleWait(SLT)
ENDIF /+ End of 9 */
ENDIF /* End of 7 */
ENDIF /* End of 6 */
ENDIF /* End of 4 */
ENDIF /% End of 3 #/
ELSE /* Transaction have used already donated
object by some LLT #/
IF (Object.Lock = 0) THEN /*10, The object was
not locked by any LLT */
IF (SLT is read-only transaction) THEN /* 11 */
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 11 »/
ELSE
IF (Same ID) THEN
/* 12, Donating transaction’s ID that lock request
transaction has and transaction’s ID that have
locked already the object %/
IF (Object.Donated = 1) THEN /*13, The object

was donated by the LLT #/
Reply : = ScheduleLock(SLT)
ELSE
IF (Object.Operation = 0) THEN /*14 */
IF (LLT is read only transaction) THEN /* 15+/
IF (SLT wants read lock) THEN /* 16 */
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleCreateReplica(SLT)
ENDIF /* End of 16 */
ELSE
IF (SLT is read-only transaction) THEN /*17+/
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 17 &/
ENDIF /* End of 15+/
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /+End of 14 %/
ENDIF /* End of 13 */
ELSE /* Different ID %/
IF (Object.Donated = 1) THEN /x 18 */
IF (SLT is read-only transaction) THEN /* 19 %/
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 19+/
ELSE
IF (LLT is read-only transaction) THEN /*20%/
IF (SLT want read lock) THEN /* 21%/
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleCreateReplica(SLT)
ENDIF /* End of 21 #/
ELSE
IF (Object.Operation = 0) THEN /* 22 #/
IF (SLT is read-only transaction) THEN
/* 23 +/
Reply : = ScheduleLock(SLT)
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 23%/
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /+ End of 22 #/
ENDIF /* End of 20 %/
ENDIF /* End of 18 %/
ENDIF /* End of 12 */
ENDIF /* End of 10 */
ENDIF /* End of 2 %/

ELSE

62 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

IF (Objectlock = 0) THEN /* 24 #/
IF (ObjectDonated = 1) THEN /+ 25 %/
Reply © = ScheduleLock(SLT)
ELSE :
IF {Object.Operation = 0) THEN /* 26 +/
IF (SLT wants read lock) THEN /+ 27 #/
Reply : = ScheduleLock(SLT)
ELSE
Reply © = ScheduleCreateReplica(SLT)
ENDIF /+ End of 27%/
ELSE
Reply : = ScheduleWait(SLT)
ENDIF /* End of 26 #/
ENDIF /* End of 25 #/
ENDIF /* End of 24 +/
ENDIF /« End of 1 ¢/
ENDFOR
IF (Reply = Abort) THEN /x Lock request of SLT is
aborted */
Abort_Transaction{ TransactionID) ;
Send(Abort)
Return(} ;
ENDIF

ENDFOR
END

4. Performance Evaluation

In this chapter, we describe experimente

d

performance behavior of MAL. Performance
comparison is made against 2PL under various
workloads. Major metrics chosen are trans—
action throughput and average transaction
waiting time.

4.1 Simulation Model

4.1.1 Queuing System Mode!

The simulation model <Figure 8> consists
of sub-components in charge of fate of a
transaction from time of inception to time of
retreat at each cell | Transaction Generator
{TG), Transaction Manager(TM), Scheduler
(SCH), Data Manager(DM), Database(DB).
We have MSSs and each MSS has its own cell
and access point. TG consists of a number of
terminals. When TG generates transactions
using exponential distribution, each transac-
tion is marked with mobile host number and
contents what objects will be used and what
operations will be used. TG generates trans-
actions one after another and sends their

6
MHA | . S{' .m
J (‘:ommu,lb?& Opcmiion

CellA CellZ

Commit, abort,
Ogeration ™
} requester
SCH queus Commi, Commit,

—/ i } oo e

Schedume >IN+ oW

MK : Mobile Host (A-~Z} UM : Data Manager

TH : Trangaction Manager,

MSS : Mobils Support Station

{MSS is constructed from Foreign Agent and Access Point)

e DBMS

OM qusue

e

{Figure 8> Simulation Model

A11A Al

olF dlolguolx Al2HE AF A&HI o&Hy FE7Y 63

operations to TM in a way of interleaving. TM
receives transactions from terminals and pas-
ses them into SCH queue and then TM could
receive acknowledge messages informing a-
bortion from SCH or completion of a requested
operation from DM. SCH could distinguish
restart transaction and give chance to request
object earlier than any other transactions using
log files. DM analyzes an operation from SCH
to determine which data item the operation is
intended to access with what operation, and
then sends the operation to the disk where the
requested data item is stored. Also, DM check
the transaction wants to restart and give ob~
jects to that transaction using log files. When-
ever an operation is completed at the server,
it sends to TM the message informing that the
requested operation has been completed suc-
cessfully.

This simulation model has been implemen-

ted using super-Simlib. Simlib is a set of
FORTRAN subroutines for simulation study.
The simlib routines appear in Law and Kelton
. Simulation Modeling and Analysis. Super-
Simlib is ANSI-C version of Simulation li-
brary routines [6]. In Super-Simlib formalism
basic models must be specified from larger
ones, and described how these ones are con-
nected together in hierarchical fashion [7].

4.1.2 Experimental Methodology

<Table 1> summarizes the model parameters
and shows the range of parameter values used
in our experiments. Values for parameters were
chosen by reflecting real world computing
practices.

Number_mobile_hosts means the number of
mobile hosts. We use two of transaction gen-
erator and they generate transactions using
inter arrival time based on exponential distri-

(Table 1) Parameters Setting for Simulation

Parameters Values Contents
Mumber_mobile_hosts Over 2 The number of mobile hosts
Database_size 100 The number of object to be accessed
Transat{on_sme)) Short : 1~5 The number of object which each transaction can
(Short_lived_transaction_size, Long : 6~20 request
Long_lived_transaction_size)
.. The time size which the available period of
T tion_t1 t ~ . o
ransaction_timeou 15~30 transaction (millisecond)
Inter_arr_time 5 Inter arrival time
Freq_arr_time 20~70% Frequency of read_only transaction
Simulation_timeout 500~1500 Simulation running time (millisecond)
Ave_wait_time Result value The average time that transaction wait in queue
R Frequency of generated replica
Result val . .
Freq_gen_repica esutt value (The value from result of simulation)
Throughput Result value Success.ful transactions against whole occurred
transactions

64 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

bution. Basically, inter arrival time is set to 5,
so they work like several mobile hosts send
transactions simultaneously. Database_size is
set 100. Database size matters if it affects the
degree of conflict. If Database_size is much
larger than Short_lived_transaction_size and
long_lived_transaction_size, conflicts rarely
occur. When we set 100, the test models ZPL
and MAL, shows different results obviously.
Short_lived_transacion_size and Long_lived_
transaction_size mean the number of objects
which can be accessed by each transaction.
That is, short lived transaction can request
from 1 to 5 objects to lock. Long lived trans-
action can works with from 6 to 15 objects.
Note that we define the ‘Transaction_timeout’
as a mean time of all transactions’ life-time
tested for in the paper. Transaction_size is
random value within restricted numbers. Ba-
sically, we tested this protocol after set Simu-
lation_length from 100 to 400. But results are
not separated obviously for evaluation because
test time is so short period. So, we set
simulation time 500 basically.

42 Simulation Results and Interpretations

421 Effect of Multiprogramming Level

This expefiment shows that MAL generally
appears to outperform 2PL in terms of average
waiting time. The good throughput perfor-
mance is also exhibited by MAL.

Performance gain of MAL against 2PL is
from 8 to 14 percent increments in terms of
throughput in most cases. And MAL out-
performs 2PL from 18 to 45 percent decrease

of performance at transaction waiting time at
long transaction size. This is because MAL has
the 2PL plus the donation of data items,
expansion of valid access scope and create
replica when the read-only transactions exist.
(<Figure 9> and <Figure 10>)

Simulation_timeout: 500, Transaction_timeout: 20, Freq_gen_replica: 0.09,
Inter_arr_time: §

Throughput (%) —e— 2PL —a— MAL
100
% A
=
° '\.__—/4\“
60 g
50
40

Long_lived_transaction_size

<Figure 9> Throughput with Size of Long Lived Transaction

Simulation_timeout: 500, Transaction_timeout: 20, Freq_gen_replica: 0.09, J

inter_arr_time: 5
—e— 2PL -a— MAL

Average waiting time in queue
30

25

15 -

A~ s .
e~

7 9 " 13 15 17

Long_lived_transaction_size

{Figure 10> Average Waiting Time with Size of Long Lived
Transaction

422 Effect of Timeout

At a higher range of transaction timeout,
MAL shows higher throughputs <Figure 11>
and a lower transaction waiting time <Figure
12>. As MAL's results, this phenomenon again
shows us higher throughput gives lower aver-
age waiting time. MAL performs better than
2PL between 3 percent and 24 percent of
performance at transaction throughput in most

cases.

A3 Als

olF doleMola A2"E A EEHY ol&y AE/Y 65

Simulation_timeout: 500, Transaction_size: 10, Freq_gen_replica: 0.10,
Inter_arr_time:

100
% A
80 ‘\\
\‘Q‘\

70
60 \ \"\L
50 -
40 . " . "

15 18 2 24 27 30

Transaction_timeout

<Figure 11> Throughput with Transaction Timeout

We can observe that average waiting time
curve of 2PL more rapidly increase than MAL
in <Figure 12>. As the transaction timeout is
increased, the transaction waiting time of
MAL is slowly increased. However, if the
transaction timeout is far extended beyond a
certain point, say 24, the average waiting time
curve of ZPL more increase than MAL. If
transaction timeout is larger than 30, the gap
between ZPL and MAL will be wide.

Simulation_timeout: 500, Transaction_size: 10, Freq_gen_replica: 0.12, —|

inter_arr_time: 5
—e— 2PL —a— MAL

Average waiting time in queue

30

25
20 /"\/
15 et
10 /4/’/ P
5 = /
o

10 18 2 2% 27 30

Transaction timeout

(Figure 12> Average Waiting Time with Transaction Timeout

423 Effect of Frequency of Read-only Transactions
Most of cases, if more read operation exist,
more efficient. In MAL outperform 2PL in this
case <Figure 13>, We can get more efficient
concurrency control in the environment which
read-only transactions are frequent. When the
read-only transaction exist 68%, MAL'’s trans-

actions can works 100% of their job within
simulation_length.

Simulation_length: 500, Transaction_size: 13, Inter_arr_time: 5 |

100

o /

" / /——-‘
-—

60

50

40 " . . . L
20 30 40 50 60 70

Freq_read_only_tra(%)

(Figure 13> Average Throughput with Frequency of Read-only
Transactions

42.3 Effect of Simulation Time

When we set simulation time to over 500,
the difference of 2PL’'s and MAL’s perfor-
mance are shown obviously. MAL showed a
more satisfying performance compared to 2PL
about 10.2 percent on an average. Figure 14 is
tested with 22% of read-only transactions.
This results show a possibility that perfor-
mance gain of 2PL against MAL could be
deteriorated sharply if the simulation timeout

size is far extended beyond a certain point.

[Transaction_size : 10, Freq_gen_replica : 0.09, Inter_arr_time : § ,

—_—.— 2PL —a— MAL

Throughput (%)

100
%0 e
80 ‘\\"/\A_ o
- —— e
60
50
4 N . .
500 700 900 1100 1300 1500

Simulation_timeout

{Figure 14> Average Throughput with Simulation Time

Overall behaviors have been revealed that as

the size of simulation timeout increases, MAL

66 JOURNAL OF INFORMATION TECHNOLOGY APPLICATIONS & MANAGEMENT

generally outperforms in terms of throughput

and waiting time.

5. Conclusion

We studied how to get more efficient con-
currency for transaction control in mobile
database system. We take three advantages in
MAL, our proposed protocol, against 2PL. First
of all is early release of lock using AL. The
next is expansion of AL’s scope and creation
of replica using classified transactions. If there
are more and more read-only request, trans-
actions are more rapidly processed, because
MAL release restriction to read-only trans-
actions and replica without delay of transac-
tions. Finally, restart mechanism. MAL showed
a more satisfying performance compared to
2PL about 10.2 percent better. Conventional
2PL for mobile system is generally simple and
convenient to implement in an environment
that the short-lived transactions mainly access
the database resources. However, as access
needs for database in mobile environment are
adapted to a wide range of applications, trans-
action processing models require long-lived
transactions needs. In this case, MAL is rec-
ommended to improve the degree of concur-
rency where long-lived transactions naturally
coexist with short-lived transactions and there
are many read-only transactions in mobile
database systems. We need more tests about
MAL, an instance, efficiency with frequency
of disconnections. In the future, we will study
this protocol to apply to real-world in more

detail for mobile database system.

References

{11 G.H. Forman,]. Zahorjan, “The Challenges
of Mobile Computing”, IEEE Computer,
Apr., 1994

[2] P.A. Bernstein, V. Hadzilacos and N.
Goodman, Concurrency Control and Re-
covery in Database Systems, Addison-
Wesley, Massachusetts, U.S.A., 1987.

[3] Kyong-I Ku and Yoo-Sung Kim, “Moflex
Transaction Model for Mobile Heter-
ogeneous Multi-database Systems”, Pro-
ceedings of IEEE 10" International Work-
shop on Research Issues in Data Engi-
neering, 2000.

[4] Siwoo Byun, Songchun Moon, “Resilient
data management for replicated mobile
database systems”, Data & Knowledge
Engineering, 29, 1999, pp. 43-55.

{5] K. Salem, H. Garcia-Molina and J., Shands,
“Altruistic Locking”, ACM Transactions on
Database Systems, Vol. 19, No. 1, March,
1994, pp. 117-168.

[6] Law and Kelton, Simulation Modeling
and Analysis SUPER SIMLIB-C Greg-
ory, Glockner, School of Industrial and
Systems Engineering Georgia Institute of
Technology, August, 1993.

[7] N. Barbhouti and G. Kaiser, “Concurrency
Control in Advanced Database Applica-
tions”, ACM Computing Surveys, Vol. 22,
No. 3, Sep., 1991, pp. 269-317.

[8] J. Lee and S. Son, “Performance of Con-
currency Control Algorithms for Real-
Time Database Systems, Performance of
Concurrency Control Mechanisms in Cen-
tralized Database Systems”, Prentice Hall,

118 AiE olF deolEiWola A~ olet® #2714

1996, pp. 429-460.
[9] P.A. Bernstein and N. Goodman, “Multi-

ZM e
19943 ~2001d Ao e
version Concurrency Control-Theory and A7) A AL A FE
Algorithms”, ACM Transactions on Data- T8 A
base Systems, December, 1983 2002 ~2004d A FHc)sHel
[10] J. Gray and A. Reuter, Transaction Pro- A7) AL 7 FE
cessing Concepts and Technigues, Mor- 2t MA}
gan Kaufmann Publishers, Inc., 1993
m XX} 8=
19773 ~1981d At
8 Al F38t3 A}
1995 ~2001d A EJ A 19833 ~19861d Old Domi-
gu AxAN T8
s

nion University, %
g3t Aa}

T4 198613 ~1990 Northwestern University,

A7) A AL FE 83} HhA}

&3 A} A HAedggdn af

#® o] =R 20034 108 202 H5stol 1A +=HE

To=

AR 2000 128 2 AMEYH RS

=

