Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 7 Issue 2
- /
- Pages.173-186
- /
- 2004
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension
특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색
Abstract
This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.
영상 검색의 수행 방법으로 사람의 시각 시스템의 특성을 기반으로 주요 의미를 갖는 객체의 효과적인 특징 추출을 통한 내용기반 영상 검색 시스템을 제안한다. 관심 객체 영역이 우선적으로 검출되도록 하기 위해 영상 내에서 비교적 면적이 크고 배경색상과의 차이가 크면서 영상의 가운데 위치하는 영역을 의미를 갖는 주요 객체로 판단하였다. 영상 고유의 특징을 얻기 위해서는 영상의 객체 윤곽선의 전체 길이를 정규화 된 일정한 세그먼트로 분할한 후에 객체 윤곽선의 세그먼트가 갖는 편각차분 벡터들의 누적 합과 양분된 객체의 시그너처를 추출하여 물체의 회전과 크기 변화에 적응적인 형태 특징으로 사용한다. 이와 같은 형태 특징을 필두로 해서 질감 샘플과 칼라, 그리고 이심률 정보를 결합하여 유사도를 측정함으로써 이동, 회전 크기 변화에 강건한 검색이 가능했으며 영역의 부분적인 변화나 손상으로 인한 객체 특성의 왜곡 현상에 덜 민감하게 반응하였다. 또한 Box-Counting Dimension에 의한 프랙탈 차원을 이용하여 측정한 객체간 복잡도 관계를 기반으로 하여 영상 특징에 서로 다른 유사도 가중치를 부여하는 방법이 잘못된 검색을 최소로 하여 더욱 효율적인 검색율을 보였다.
Keywords