Miscibility in Binary Blends of Poly(vinyl phenol) and Poly(n-alkylene 2,6-naphthalates)

  • Lee, Joon-Youl (College of Environment and Applied Chemistry, Department of Advanced Polymer and Fiber Materials, Kyung Hee University) ;
  • Han, Ji-Young (College of Environment and Applied Chemistry, Department of Advanced Polymer and Fiber Materials, Kyung Hee University)
  • Published : 2004.02.01

Abstract

We have performed Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on blends of poly(vinyl phenol) (PVPh) with poly(n-alkylene 2,6-naphthalates) containing alkylene units of different lengths. The results indicate that each poly(ethylene 2,6-naphthalate) (PEN) and poly(trimethylene 2,6-naphthalate) (PTN) blend with PVPh is immiscible or partially miscible, but blends of poly(butylene 2,6-naphthalate) (PBN) with PVPh are miscible over the whole range of compositions in the amorphous state. FTIR spectroscopic analysis confirmed that significant degree of intermolecular hydrogen bonding occurs between the PBN ester carbonyl groups and the PVPh hydroxyl groups. The large difference in the degree of mixing in these blend systems is described in terms of the effect that chain mobility has on the accessibility of the ester carbonyl functional groups toward the hydroxyl groups of PVPh, which in turn impacts the miscibility of these blends.

Keywords

References

  1. Polymer Blends, Vol.1:Formulations;Vol.2:Performance D.R.Paul;C.B.Bucknall(eds.)
  2. Polymer Blends and Alloys G.O.Shonaike;G.P.Simon(eds.)
  3. Polymer-Polymer Miscibility O.Olabisi;L.M.Robeson;M.T.Shaw(eds.)
  4. Specific Interactions and the Miscibility of Polymer Blends M.M.Coleman;J.F.Graf;P.C.Painter
  5. Prog. Polym. Sci. v.20 M.M.Coleman;P.C.Painter https://doi.org/10.1016/0079-6700(94)00038-4
  6. Macromolecules v.17 E.J.Moskala;S.E.Howe;P.C.Painter;M.M.Coleman https://doi.org/10.1021/ma00139a006
  7. Macromoledules v.25 J.A.Pomposo;A.Etxeberria;M.Cortazar https://doi.org/10.1021/ma00051a029
  8. J. Polym. Sci. Polym. Phys. Ed. v.31 L.A.Belfiore;C.Qin;E.Ueda;A.T.N.Pires https://doi.org/10.1002/polb.1993.090310405
  9. Macromolecules v.24 C.J.T.Landdry;D.M.Teegarden https://doi.org/10.1021/ma00015a012
  10. Polymer v.32 C.J.Serman;P.C.Painter;M.M.Coleman https://doi.org/10.1016/0032-3861(91)90591-6
  11. Macromolecules v.22 C.J.Serman;Y.Xu;P.C.Painter;M.M.Coleman https://doi.org/10.1021/ma00194a086
  12. Macromolecules v.22 M.M.Coleman;A.M.Lichkus;P.C.Painter https://doi.org/10.1021/ma00192a013
  13. Macromolecules v.25 Y.Xu;P.C.Painter;M.M.Coleman https://doi.org/10.1021/ma00051a057
  14. Ph. D. Thesis, Pennsylvania State University E.J.Moskala
  15. Polymer v.26 E.J.Moskala;D.F.Varnell;M.M.Coleman https://doi.org/10.1016/0032-3861(85)90034-5
  16. J. Appl. Polym. Sci. v.54 M.R.Landry;D.J.Massa;C.J.T.Mandry;D.M.Teegarden;R.H.Colby;T.E.Long;P.M.Henrichs https://doi.org/10.1002/app.1994.070540801
  17. Macromolecules v.26 C.J.T.Landry;D.J.Massa;D.M.Teegarden;M.R.Landry;P.M.Henrichs;R.H.Colby;T.E.Long https://doi.org/10.1021/ma00075a027
  18. Polymer v.33 R.S.Porter;L.H.Wang https://doi.org/10.1016/0032-3861(92)90866-U
  19. Korea Polym. J. v.2 K.H.Yoon;S.C.Lee;O.O.Park
  20. Polymer(Korea) v.22 S.W.Chun;J.O.Park;H.J.Kang
  21. Macromolecules v.31 M.Guo;W.J.Brittain https://doi.org/10.1021/ma9716903
  22. Polymer v.40 A.M.Kenwright;S.K.Peace;R.W.Richards;A.Bunn;W.A.MacDonald https://doi.org/10.1016/S0032-3861(98)00806-4
  23. Macromolecules v.32 Y.Aoki;L.Li;T.Amari;K.Nishmura;Y.Arashiro https://doi.org/10.1021/ma981657w
  24. Transreactions in Condensation Polymers S.Fakirov(ed.)
  25. Macromolecules v.28 H.L.Chen https://doi.org/10.1021/ma00112a033
  26. Polymer v.38 H.L.Chen;J.C.Hwang;C.C.Chen;R.C.Wang;D.M.Fang;M.J.Tsai https://doi.org/10.1016/S0032-3861(97)85610-8
  27. Macromolecules v.30 E.M.Woo;S.N.Yau https://doi.org/10.1021/ma961031a
  28. Polymer Testing v.17 J.Jang;K.Sim https://doi.org/10.1016/S0142-9418(97)00066-4
  29. Polymer v.39 S.Bicakci;M.Cakmak https://doi.org/10.1016/S0032-3861(97)10227-0
  30. Polym. Bull. v.46 C.H.Lin;C.S.Wang https://doi.org/10.1007/s002890170074
  31. Polym. Eng. Sci. v.35 K.M.Kit;J.M.Schultz;R.M.Gohil https://doi.org/10.1002/pen.760350808
  32. Polymer(Korea) v.26 J.Y.Lee;J.Y.Han
  33. J. Res. Natl. Bur. Stand v.66A J.D.Hoffman;J.J.Weeks https://doi.org/10.6028/jres.066A.003
  34. Macromolecules v.8 T.Nishi;T.T.Wang https://doi.org/10.1021/ma60048a040
  35. J. Appl. Polym. Sci. v.21 I.Ouchi;M.Hosoi;S.Shimotsuma https://doi.org/10.1002/app.1977.070211220
  36. J. Polym. Sci. Part B:Polym. Phys. v.37 T.Chiba;S.Asai;W.Xu;M.Sumita https://doi.org/10.1002/(SICI)1099-0488(19990315)37:6<561::AID-POLB8>3.0.CO;2-H
  37. Polymer v.43 M.Y.Ju;J.M.Huang;F.C.Chang https://doi.org/10.1016/S0032-3861(01)00808-4
  38. Macromolecules v.36 K.Tashiro;J.Cheng;M.Ike https://doi.org/10.1021/ma020917d
  39. Polymer v.43 A.E.Tonelli https://doi.org/10.1016/S0032-3861(02)00506-2
  40. Macromolecules v.5 L.Zeeman;D.Patterson https://doi.org/10.1021/ma60028a030
  41. Macromolecules v.10 A.Robard;D.Patterson;G.Delmas https://doi.org/10.1021/ma60057a042
  42. Macromolecules v.16 F.Hori;A.Hirai;K.Murayama;R.Kitamura;T.Suzuki https://doi.org/10.1021/ma00236a022
  43. Polym. J. v.28 T.Yamanobe;H.Matsuda;K.Imai;A.Hirata;S.Mori;T.Komoto https://doi.org/10.1295/polymj.28.177
  44. J. Appl. Polym. Sci. v.70 P.C.Painter;Y.Park;M.M.Coleman https://doi.org/10.1002/(SICI)1097-4628(19981114)70:7<1273::AID-APP4>3.0.CO;2-J
  45. Macromolecules v.29 M.M.Coleman;G.H.Pehlet;P.C.Painter https://doi.org/10.1021/ma9604045
  46. Macromolecules v.31 Y.Hu;P.C.Painter;M.M.Coleman https://doi.org/10.1021/ma980248x
  47. Macromolecules v.35 S.Viswanathan;M.D.Dadmun https://doi.org/10.1021/ma011031x
  48. Polymer v.42 B.Radmard;M.D.Dadmun https://doi.org/10.1016/S0032-3861(00)00533-4