PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk (PTC Division, Shinwha Intertek Corp.,) ;
  • Cho, Hyun-Nam (Optoelectronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Seong-Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Kim, Jun-Young (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University)
  • 발행 : 2004.02.01

초록

We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

키워드

참고문헌

  1. Macromolecules v.28 M.A.K.L.Dissanayake;R.Frech https://doi.org/10.1021/ma00119a022
  2. Handbook of Conducting Polymers T.A.Skotheim
  3. Electroanalytical Chemistry W.E.Murray
  4. Solid State Ionics v.116 S.H.Kim;J.Y.Kim;H.S.Kim;H.N.Cho https://doi.org/10.1016/S0167-2738(98)00265-3
  5. Solid State Ionics v.124 J.Y.Kim;S.H.Kim https://doi.org/10.1016/S0167-2738(99)00104-6
  6. Polym. Eng. Sci. v.18 M.Narkis;A.Ram;F.Flashner https://doi.org/10.1002/pen.760180808
  7. J. Mater. Sci. v.30 M.Q.Zhang;J.R.Xu;H.M.Zeng;Q.Huo;F.C.Yun;Z.Y.Zhang;K.Friedrich https://doi.org/10.1007/BF00361501
  8. J. Am. Chem. Soc. v.73 D.S.McLachlas;M.Blaszkiewicz;R.E.Newnham
  9. J. Mater. Sci. v.28 F.Lux https://doi.org/10.1007/BF00357799
  10. Rubb. Chem. Technol. v.54 A.Voet
  11. J. Mater. Sci. v.28 H.M.Al-Allak;A.W.Brinkman;J.Woods https://doi.org/10.1007/BF00349041
  12. J. Appl. Polym. Sci. v.19 C.Klason;J.Kubat https://doi.org/10.1002/app.1975.070190319
  13. J. Mater. Sci. v.24 D.M.Moffaatt;J.P.Runt;A.Halliyal;R.E.Newnham https://doi.org/10.1007/BF01107449
  14. Carbon Black-Polymer Composities E.K.Sichel
  15. International Symposium on Advanced Packaging Materials:Processes, Properties, and Interfaces S.Luo;C.P.Wong
  16. US Patent 5,880,668 T.J.Hall
  17. J. Mater. Sci. v.32 P.J.Mather;K.M.Thomas https://doi.org/10.1023/A:1018557501174
  18. J. Mater. Sci. v.32 P.J.Mather;K.M.Thomas https://doi.org/10.1023/A:1018567731526
  19. J. Mater. Sci. v.29 Y.Pan;G.Z.Wu;X.S.Yi https://doi.org/10.1007/BF00349976
  20. Eur. Polym. J. v.33 H.Tang;X.Chen;Y.Luo https://doi.org/10.1016/S0014-3057(96)00221-2
  21. Polym. Eng. Sci. v.13 J.Meyer https://doi.org/10.1002/pen.760130611
  22. J. Mater. Sci. Lett. v.16 B.Wang;X.Yi;Y.Pan;H.Shan https://doi.org/10.1023/A:1018536011826
  23. J. Appl. Polym. Sci. v.25 M.Narkis;A.Ran;Z.Stein https://doi.org/10.1002/app.1980.070250725
  24. Predicting the Properties of Mixtures L.E.Nielson
  25. J. Appl. Chem. v.10 M.Yu;L.J.Yang;L.X.Gu;S.X.Li
  26. Polym. Eng. Sci. v.39 G.Yu;M.Q.Zhang https://doi.org/10.1002/pen.11562
  27. Polym. Bull. v.25 M.Sumita;K.Sakata;S.Asai;K.Miyasaka;H.Nakagawa https://doi.org/10.1007/BF00310802
  28. US Patent 3,264,272 R.W.Rees
  29. US Patent 3,267,083 G.Lawrence
  30. Carbon v.41 H.Darmstadt;C.Roy https://doi.org/10.1016/S0008-6223(03)00287-2
  31. Carbon v.39 S.Goeringer;N.R.Detacconi;C.R.Chenthamarakshan;K.Rajeshwar;W.A.Wampler https://doi.org/10.1016/S0008-6223(00)00170-6
  32. J. Appl. Polym. Sci. v.72 S.H.Foulger https://doi.org/10.1002/(SICI)1097-4628(19990620)72:12<1573::AID-APP10>3.0.CO;2-6
  33. J. Robb. Chem. Technol. v.71 M.Wang https://doi.org/10.5254/1.3538492
  34. J. Appl. Polym. Sci. v.80 G.Wu;C.Zhang;T.Miura;S.Asai;M.Sumita https://doi.org/10.1002/app.1191
  35. Eur. Polym. J. v.32 H.Tang;X.Chen;Y.Luo https://doi.org/10.1016/0014-3057(96)00026-2
  36. Macromolecules v.31 M.Q.Zhang;G.Yu;H.M.Zeng;H.B.Zhang;Y.H.Hou https://doi.org/10.1021/ma9806918
  37. J. Colloid Interf. Sci. v.255 S.J.Park;H.C.Kim;H.Y.Kim https://doi.org/10.1006/jcis.2002.8481
  38. J. Appl. Polym. Sci. v.78 X.W.Zhang;Y.Pan;Q.Zheng;X.S.Yi https://doi.org/10.1002/1097-4628(20001010)78:2<424::AID-APP220>3.0.CO;2-6
  39. J. Appl. Polym. Sci. v.85 H.Xie;P.Deng;L.Dong;J.Sun https://doi.org/10.1002/app.10720
  40. Polym. Eng. Sci. v.39 J.Feng;C.M.Chan https://doi.org/10.1002/pen.11507
  41. Jpn. J. Appl. Phys. v.10 K.Ohe;Y.Natio https://doi.org/10.1143/JJAP.10.99
  42. Polym. Eng. Sci. v.21 M.Narkis;A.Ram;Z.Stein https://doi.org/10.1002/pen.760211602
  43. J. Appl. Polym. Sci. v.51 H.Tang;J.H.Piao;X.F.Chen;Y.Z.Lou;S.H.Li
  44. J. Appl. Polym. Sci. v.51 H.Tang;Z.Y.Liu;J.H.Piao;X.F.Chen;Y.Z.Lou;S.H.Li https://doi.org/10.1002/app.1994.070510701
  45. UV & EB Curing Technology & Equipment R.Mehnert;A.Pincus;I.Janorsky;R.Stowe;A.Berejka
  46. IEEE Transaction on Components, Hybrids, and Manufacturing Technology v.CHMT-4 F.A.Doljack
  47. IEC 60738-1 Themistors Directly heated positive stepfunction temperature coefficient - Part Ⅰ:Generic specification IEC