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A MINIMUM THEOREM FOR THE
RELATIVE ROOT NIELSEN NUMBER

Ki1-YEOL YANG AND XUEZHI ZHAO

ABSTRACT. In [1], a relative root Nielsen number N,;(f;c¢) is in-
troduced which is a homotopy invariant lower bound for the number
of roots at ¢ € Y for a map of pairs of spaces f: (X, A) — (Y, B).
In this paper, we obtain a minimum theorem for N, (f;c) under
some new assumptions on the spaces and maps which are different
from those in {1].

1. Introduction

Let f: X — Y beamap and ¢c € Y a point. A root of f at cis a
point z € X that is a solution to the equation f(z) = c. Denote the set
of roots by root(f;c) and let §root(f;c) be the cardinality of that set.
Nielsen root theory is concerned with

MR[f;c] = min{#root(g;c) : g ~ f},

where g ~ f means that the minimum is taken over all maps g homotopic
to f.

By analogy with Nielsen fixed point and coincidence theory, a Nielsen
number of roots N (f; c) was defined by Hopf and Brooks which is a lower
bound for M R|[f; c]. Hopf showed that there exist maps f between closed
oriented surfaces for which N(f;c) is strictly less than M R|[f;c| but if
f: X — Y is a map between closed oriented n-manifolds with n # 2,
then N(f;c) = MR|[f;c], which is the first minimum theorem.
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In the setting of maps of pairs, i.e. maps of the form f : (X,A) —
(Y, B), instead of the minimum number M R|[f; c], we are concerned with

MR, .[f;c] = min{#root(g;c) : g = f},

where ¢ = f means that the minimum is taken over all maps g ho-
motopic, as maps of pairs, to f, i.e. there is a map of pairs H :
(X x I,Ax I)— (Y,B) such that H(z,0) = f(z) and H(z,1) = g(x)
for all z € X.

In [7], Yang defined a relative Nielsen number N(f; X, A, ¢) for roots
of relative map f : (X, A) — (Y, B) at ¢ € Y and showed that this num-
ber is a homotopy invariant lower bound of M R,..[f;c]. Later, Brown
and Schirmer presented more precise lower bound N, (f;c), and ob-
tained some minimum theorems. “No local cut point” and “by passing”
lie in the sufficient conditions in the minimum theorems of classical and
relative Nielsen numbers. In [8], Zhao introduced a new concept “local
cut set” and showed the relation between the “no local cut set” and “by
passing” conditions in Nielsen fixed point theory.

The purpose of this paper is to prove a new minimum theorem for
the relative root Nielsen number N,..;(f;¢) under some new assumption
on the space pairs and maps which are different from those in [1]. In
some case, the “by passing” condition may be replaced by “no local cut
set”.

The definitions for Nielsen root numbers in this paper are based on

[1].
2. The relative root Nielsen number

Throughout this paper, we always assume that X and Y are compact
connected polyhedra, and that A and B be closed subpolyhedra of X and
Y, respectively. Consider the relative of the form f : (X, A) — (Y, B),
we shall denote by f : A — B the restriction of f to A. Let c € Y be
any point.

We recall from [5] that the root classes of f: X — Y are the equiva-
lence classes of root( f; ¢) under the following equivalence relation. Points
z,x’ € root(f;c) are equivalent if there is a path w in X from z to z’
such that (f ow) = 1 € m(Y,¢). The definition of root class applies
as well to the restriction f : A — B, keeping in mind that there are
no root classes if ¢ € B and that if z,2’ € A are not in the same path
component, they cannot be members of the same root class. Each root
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class of f is contained in some root class of f : X — Y. By [5; p.126]
the maps f : X — Y and f: A — B have only finitely many root classes
at c.

Suppose K : X x I — Y is a relative homotopy, so we have the maps
k; : (X,A) — (Y, B) defined by ki(z) = K(z,t). Given a root class R
of kg at ¢ € Y, there is a root class R of K at ¢ containing R, and each
nonempty t-slice [R]; is a root class of k; so, in particular [R]o = R.
A root class R of f : X — Y is inessential if there is a homotopy
K : X x I — Y such that kg = f with [Rlp = R and [R]; = @. A
root class that is not inessential is said to be essential and the Nielsen
number N(f;c) of roots of f at ¢ is defined to be the number of essential
root classes for f at c.

In the setting of maps of pairs, there is a modification of the concept
of essential root class as follows.

DEFINITION 2.1. ([1; Definition 2.1]) Let f : (X,A) — (Y,B) be a
relative map and ¢ € Y a point. A root class Rof f: X — Y at cis
relatively inessential if there is a homotopy of pairs K : (X xI) — (Y, B)
such that kg = f and the root class R of K with [R]op = R and [R}; =
&. Otherwise, we say that the root class R of f is relatively essential.
We will use the notation N*(f;¢) to denote the number of relatively
essential root classes of f at c.

An essential root class is relatively essential, so N¥(f;c) > N(f;c).
They are not always equal. Consider the identity map f : (D,0D) —
(D, D). For any c € D, there is a single root class for f: D — D. It is
inessential, thus N(f;c) = 0, but it is relatively essential so N*(f;c) =
1.

If, for a map f : (X,4A) — (Y,B) and ¢ € Y, a root class R of
f: X — Y at ¢ contains an essential root class R of f: A — B at c,
then R is called a common root class of f and f at c. We denote the
number of relatively essential common root classes by Nt (f, f;c).

DEFINITION 2.2. ([1; Definition 2.2}) Let f : (X,A) — (Y, B) be a
map and choose ¢ € Y. Define N,¢(f;c), the relative Nielsen number
of roots of f: (X,A) — (Y,B) at c€ Y, as follows:

Nya(f;c) = N(f;¢) + N(f;¢) = N*(f, f; ).

It follows easily from the definition that N, (f;c) > N(f;c). We
also note that N, (f;c) = N(f;c) if B = @, so the relative Nielsen
number specializes to the root Nielsen number when f is not a map of
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pairs. Although the definition of N, (f;c) applies to any point c € Y,
if ¢ ¢ B there are no root classes of f, so the definition simplifies to
Nrel(f;c) = N+(f; C)'

By definition, we know that N,.(f;c) has the relatively homotopic
invariance, and that any map relatively homotopic to f : (X, A) —
(Y, B) has at least Ny.¢i(f;c) roots at ¢, i.e. Nypei(f;c) < MRye[f;c] (cf.
[1; Theorem 2.5]).

3. Local cut set

A local cut point z in X is the point at which there is a connected
neighborhood U such that U — {z} is not connected. For a space X
with local cut points, M R[f] may be larger than N(f) even if f is a
deformation. Zhao, in [8], introduces a new concept “local cut set”,
which is a generalization of the “local cut point”.

DEFINITION 3.1. ([8; Definition 3.2]) A connected subpolyhedron A
of X is said to be a local cut set of X if there is an open connected neigh-
borhood N(A) of A in X such that the set N(A) — A is not connected.

It was shown in [8] that the property of “no local cut set” played the
similar role as the “by-passing”.
The next lemma is a root version of [8; Lemma 3.5].

LEMMA 3.2. Let f: (X,A) — (Y, B) be a relative map. If for each
component Ay component of A, Ay is not a local cut set of X and the
restriction f |4, of f on Ay induces a trivial homomorphism m (Ag) —
71(B). Then two roots zy and z1 of f on X — A are in the same root
class if and only if there exists a path w in X — A from zy to z; such
that (fow) =1 € m (Y, ¢).

Proor. “If”. It is trivial.

“Only if”. Since z¢ and z; are in the same root class of f, there
is a path p: I — X from zo to z; such that (fop) =1 € m(Y,¢).
By general position technique, we can assume that p(/) N A has finitely
many components, denoted by ¢y, ¢, ..., ¢, Because every component
of A is not a local cut set, we can also assume that, for each k, k =
1,2,...,m, ¢ is not a constant path. Hence p = bgc1bicabs - - - ¢ b,
where bg, b1,...,b, are in X — A but for their endpoints,

From [8, proposition 3.2], the boundary Bd(A;) of each component
Aj of Ais connected. Thus, for each k, there exists a path d, in Bd(A) =
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Bd(X — A) such that ¢, and dj have the same endpoints, where k =
1,2,...,m. Set

w; = b0d1b1d2b2 . ‘di—lbi—h 1= 1, 2, cee , M + 1.
Then each w; is a path in CI(X — A), and
p = (wicrd; 'wi ) (wacady ' wiY) -+ (Wimemd wi ) Wit

Thus, we have, in m1(Y, ¢), that

(

= ((f(w)f cl)f(dfl)f(wl"l)(f(wz)f(Cz)f(dz_l)f(wg_l) .
(f (wm)
{

Since ckdk isaloopin A (k=1,2,... ,m), from the assumption of the
behavior of f on Ak, we have (f (ckd MY =1em(Y,ec).
So,

1= (f(w)f(wr) ™" Flwa) flwz) ™" flwm) fwm) ™ fwme1))

= <f © wm+1>7

where w11 is a path in ClI(X — A) from z¢ to z;. From [8, proposition
3.3], we know that Bd(A) can be by-passed in CI(X — A), and hence
there exists a path w from ¢ to x; such that w ~ w,,41. Thus, (fow) =
1 em(Y, o). O

With the same method as in the proof of the lemma, we have

COROLLARY 3.3. Let f : (X,A) — (Y,B) be a relative map. If
for each component Ay component of A, Aj is not a local cut set of
X and the restriction f | 4, of f on Ay induces a trivial homomorphism
7m1{Ak) — m1(B). Then, for any two roots ¢ and z of f on X — A, where
29 € X — A and x1 € Bd(A), z¢ and x; are in the same root class if and
only if there exists a path w from xo to x1 such that w([0,1)) C X — A
and (fow) =1¢€ m(B,c).
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4. The minimum theorem for N, (f;c)

The root Nielsen number N(f;c) of amap f: X — Y is called sharp
if it is a sharp lower bound for the number of roots for all maps in the
homotopy class of f, that is, if N(f;c) = MR|[f;c]. Sharpness of N(f;c)
is established by constructing, in the proof of a “minimum theorem”, a
map g ~ f with precisely N(f;c) roots at c. In general this can be done
only in a manifold setting. It is known that the root Nielsen number
N(f;c)of f: X — Y is sharp if both X and Y are closed , connected,
oriented PL-manifolds and n # 2.

In [1], the definition of sharpness is extended to maps of pairs, and say
that the relative root Nielsen number N, (f;¢) of a map f : (X, A) —
(Y, B) is sharp if Nyei(f;¢) = MR,ei[f;c]. And we can establish sharp-
ness of N, (f;c) only in manifold settings. Thus, we assume that X
and Y are connected oriented manifolds of the same dimension. In [1],
the sharpness of N, (f;c) established by proving a minimum theorem
where X and Y are closed oriented n-manifolds. The minimum theorem
needs that A can be by-passed in X, which is an assumption frequently
needed in relative Nielsen theory. This assumption can be relaxed in
some sense.

The key point in the proof of minimum is to united roots in the same
root class. We write this procedure as a lemma, which is based on [4,
Theorem 2.4].

LEMMA 4.1. Let f : X — Y be a map between smooth n-manifolds,
wheren > 3, and let c € Y. Let ' and x” be two roots of f at ¢ and w
a path from 2’ to 2" with (f(w)) =1 € m1(Y, c) and w(I) Nroot(f,c) =
{z',2"}. Then for any open subset W of X with w((0,1]) C W and
' =w(0) € CI(W) — W, there is map f' : X — Y such that

Dff~frel X -W,

2) root(f',c) = root(f,c) — {z"}.

ProoF. Because dimX > 3, by a small homotopy, we may change
homotopically w into a smooth arc w’, i.e. a path without self-intersec-
tion such that w ~ w’ rel {0,1}, w'((0,1]) C W, and w'(I)Nroot(f,c) =
{/,2"}. We still have (f(w')) =1 € m (Y, ¢).

Using the tubular neighborhood of w(I) in X, there is an open subset
U in X which is, up to a homeomorphism, considered as a subset of R™
such that

DU ={(z1,...,2a)0<21<2,-2<2,<2,1=2,... ,n} CW,
2) w'(t) = (¢,0,...,0) for all t € I,
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3) Cl(U)—{z"} cW.

Take a coordinate neighborhood V of ¢. We may consider V as the
standard united open ball in R™ with ¢ = 0 the original point. Since
f(a') = f(z") = c, there a small £ (0 < € < %) such that f(w'([0,¢])) U
f(w'([1 —¢€,1])) C V. Pick an arc v in V such that v(t) = f(w'(t)) for
t € [0,e]U[1 —¢,1] and that v([e, 1 —€]) is a line segment from f(w'())
to f(w'(1—¢)). Since v lies in the contractible ball V, (v) =1 € 1 (Y, ¢).
Notice that (f(w')) =1 € m1(Y, ¢), we have that f(w') ~ v rel {0,1}. It
is no difficulty to see that f(w') ~ v rel w/([0,€] U[1 —¢,1]). We write
H : w'(I) x I — Y for this homotopy. Notice that dimY > 3. The
homotopy H is chosen so that ¢ ¢ H(w'([e,1 —€]) x I).

Define amap F: X x {0} U(K'Uw'(I)UK"U(X -U))xI —Y by

Flot) = { H(z,t) if =z E.w’([e,l —g))
f(z) otherwise,
where K’ = {(z1,... ,2,)|0 < z1 <¢, -1<z;,<1,9=2,...,n} and

K'"={(z1,...,zp)|l—-e<z; <1+4¢, -1<z;<1,i=2,...,n}.

By the well-known retraction map r : X x I — (K' Uw'(I)UK" U
(X —U)) x I (see p.31, Ex. O of [3]). We can extend F into a map
F:XxI—Y. As F(z,t) # cfor all points (z,t) on the boundary of the
extended set (U — (K’ Uw'(I)UK")) x I, we have that F~1(c)Ncl(U) =
{z’,2"} x I, i.e. Toot(Fi,c) NCUU) = {z',z"} for all t-slice of F.

Consider the 1-slice F; of F. As Fy(w'(I)) C V, there is a convex
open set @ with w'((0,1]) C @, '’ = w'(0) € Bd(Q) and F1(Q) C V.
Notice that in V, the point ¢ is identified with zero point 0. We may
homotope F; to a map f’ defined by

() = { 1-t)F(y) if z=ta’+(1-t)y, ye Bd(Q)—{z'}
R (z) otherwise.

With the same argument as in [4], f is the desired map. O

THEOREM 4.2. (Minimum theorem for closed manifolds) Let X and
Y be closed oriented smooth n-manifolds, where n # 2, and let c € Y.
Let A be a disjoint union of submanifolds of X, which is not a local
cut set of X, and let B be a disjoint union of submanifolds of Y. If
f:(X,A) — (Y, B) is a map of pairs such that each component A of
A, f |a, induces a trivial homomorphism from 71(Ay) to m1(B) and if
N(f;c) is sharp, then N,o(f;c) is sharp.
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PrOOF. Clearly, this theorem is trivial if the dimension n of X and
Y is 1 or 0. In the following proof, we assume that n > 3.

As N(f;c) is sharp, we may assume that f has N(f;c) roots on A. If
Int(A) # @, then A will be an n-manifold with boundary. In this case,
we claim that N(f,¢) = 0. In fact, if N(f,c) # 0, f has a root z at ¢
because N(f;c) is sharp. As in the proof of Theorem 2.1 in [2], we can
take a subset Q = D4mA-1 x [0, 1], which is a tubular neighborhood of
a path from a point on 34 to z. Notice that A — Int4(Q) is a strong
deformation retractor of A, where Int 4 means the relative interior. We
have a retraction k, : A — A — Int 4(Q) such that

1) k.(a) =a for a € A — Int4(Q);

2) k.(a) € A—Inta(Q) for all a € A.

It is clear that k, is homotopic relative A — Int4(Q) to the identity
map on A with z & k,(A). As root(f;c) is finite, we may choose Q so
that it does not meet root(f;c). Thus, f is homotopic to the map fk,
with root(fk,;c) = root(f;c) — {z}. This contradicts to the fact that
N(f;c) is sharp.

Thus, all roots lie in Bd(X — A) = A if N(f;c) # 0.

Using homotopy extension theorem, we can extend the map ftoa
new f : (X,A) — (Y, B). Using the transversality, we can deform the
map relative A so that c is the regular value of f|x_4. Thus, we may
assume that f has finitely many roots at c.

Let ' and z” be two roots in X — A lying in the same class. By
Lemma 3.2, there is a path a in X — A from z’ to 2’/ such that (f(a)) =
1 € m (Y, c). Using Lemma 4.1, we can combine the root z” into 2’ so
that the map changing happens on a small neighborhood W of «((0, 1]).
Because a(I) € X — A, we may choose W so that it lies in X — A. Thus,
the new map is relatively homotopic to f. Repeat the procedure above,
we get a map so that each root class has at most one root in X — A. We
still call it f.

Let y be aroot of f which is contained in a relatively essential common
root class. If y € X — A, then there is a root z € A such that y and 2
are in the same root class. Similarly, by Corollary 3.3 and Lemma 4.1,
we can unite y into z. Thus, the result map will have Ny (f,c) roots..d

Our minimum theorem is different from the Theorem 3.3 in [1]. Con-
sider the following example.

EXAMPLE 4.3. Let X = T3#T2 be a connected sum of two 3-
dimensional tori and A a connected summand, which is homeomorphic
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to a punctured 3-dimensional torus. Let Y = T® and B = D? a three-
ball. The f: (X,A) — (Y, B) is a pinch on 4, i.e. f is homotopic to
the natural quotient map X — X/A =Y.

By Theorem 4.2, the root number N,.;(f;¢) in this example is sharp.
But [1; Theorem 3.3] cannot be applied here, because A is not by-passed
in X.
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