WEAK SMOOTH α -STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

CHUN-KEE PARK, WON KEUN MIN AND MYEONG HWAN KIM

ABSTRACT. In [3] and [6] the concepts of smooth closure, smooth interior, smooth α -closure and smooth α -interior of a fuzzy set were introduced and some of their properties were obtained. In this paper, we introduce the concepts of several types of weak smooth compactness and weak smooth α -compactness in terms of these concepts introduced in [3] and [6] and investigate some of their properties.

1. Introduction

Badard [1] introduced the concept of a smooth topological space which is a generalization of Chang's fuzzy topological space [2]. Many mathematical structures in smooth topological spaces were introduced and studied. In particular, Gayyar, Kerre and Ramadan [5] and Demirci [3, 4] introduced the concepts of smooth closure and smooth interior of a fuzzy set and several types of compactness in smooth topological spaces and obtained some of their properties. In [6] we introduced the concepts of smooth α -closure and smooth α -interior of a fuzzy set which are generalizations of smooth closure and smooth interior of a fuzzy set defined in [3] and obtained some of their properties. In this paper, we introduce the concepts of several types of weak smooth compactness and weak smooth α -compactness in terms of these concepts introduced in [3] and [6] and investigate some of their properties.

Received January 22, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: fuzzy sets, smooth topology, α -closure, α -interior, weak smooth compactness, weak smooth α -compactness.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. I^X will denote the set of all fuzzy sets of X. 0_X and 1_X will denote the characteristic functions of ϕ and X, respectively.

A smooth topological space (s.t.s.) [7] is an ordered pair (X, τ) , where X is a non-empty set and $\tau: I^X \to I$ is a mapping satisfying the following conditions:

- (O1) $\tau(0_X) = \tau(1_X) = 1$;
- (O2) $\forall A, B \in I^X$, $\tau(A \cap B) \ge \tau(A) \land \tau(B)$;
- (O3) for every subfamily $\{A_i : i \in J\} \subseteq I^X, \tau(\bigcup_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau(A_i)$. Then the mapping $\tau: I^X \to I$ is called a smooth topology on X. The number $\tau(A)$ is called the degree of openness of A.

A mapping $\tau^*: I^X \to I$ is called a smooth cotopology [7] if the following three conditions are satisfied:

- (C1) $\tau^*(0_X) = \tau^*(1_X) = 1;$ (C2) $\forall A, B \in I^X, \ \tau^*(A \cup B) \ge \tau^*(A) \land \tau^*(B);$
- (C3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau^*(\cap_{i \in J} A_i) \ge \land_{i \in J} \tau^*(A_i)$.

If τ is a smooth topology on X, then the mapping $\tau^*: I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is a smooth cotopology on X. Conversely, if τ^* is a smooth cotopology on X, then the mapping $\tau: I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is a smooth topology on X [7].

For the s.t.s. (X, τ) and $\alpha \in [0, 1]$, the family $\tau_{\alpha} = \{A \in I^X : \tau(A) \geq$ α } defines a Chang's fuzzy topology (CFT) on X [2]. The family of all closed fuzzy sets with respect to τ_{α} is denoted by τ_{α}^{*} and we have $\tau_{\alpha}^{*} = \{A \in I^{X} : \tau^{*}(A) \geq \alpha\}$. For $A \in I^{X}$ and $\alpha \in [0, 1]$, the τ_{α} -closure (resp., τ_{α} -interior) of A, denoted by $cl_{\alpha}(A)$ (resp., $int_{\alpha}(A)$), is defined by $cl_{\alpha}(A) = \cap \{K \in \tau_{\alpha}^* : A \subseteq K\} \text{ (resp., } int_{\alpha}(A) = \cup \{K \in \tau_{\alpha} : K \subseteq A\} \}.$

Demirci [3] introduced the concepts of smooth closure and smooth interior in smooth topological spaces as follows:

Let (X, τ) be a s.t.s. and $A \in I^X$. Then the τ -smooth closure (resp., τ -smooth interior) of A, denoted by \overline{A} (resp., A^o), is defined by \overline{A} = $\cap \{K \in I^X : \tau^*(K) > 0, A \subseteq K\} \text{ (resp., } A^o = \bigcup \{K \in I^X : \tau(K) > 0\} \}$ $0, K \subseteq A\}$).

Let (X,τ) and (Y,σ) be two smooth topological spaces. A function $f: X \to Y$ is called smooth continuous with respect to τ and σ [7] if $\tau(f^{-1}(A)) \geq \sigma(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is called weakly smooth continuous with respect to τ and σ [7] if $\sigma(A) >$ $0 \Rightarrow \tau(f^{-1}(A)) > 0$ for every $A \in I^Y$. In this paper, a weakly smooth continuous function with respect to τ and σ is called a quasi-smooth continuous function with respect to τ and σ .

A function $f: X \to Y$ is smooth continuous with respect to τ and σ if and only if $\tau^*(f^{-1}(A)) \geq \sigma^*(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is weakly smooth continuous with respect to τ and σ if and only if $\sigma^*(A) > 0 \Rightarrow \tau^*(f^{-1}(A)) > 0$ for every $A \in I^Y$ [7].

THEOREM 2.1 [3]. Let (X, τ) and (Y, σ) be two smooth topological spaces. If a function $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , then

- (a) $f(\overline{A}) \subseteq \overline{f(A)}$ for every $A \in I^X$,
- (b) $\overline{f^{-1}(A)} \subseteq f^{-1}(\overline{A})$ for every $A \in I^Y$,
- (c) $f^{-1}(A^o) \subseteq (f^{-1}(A))^o$ for every $A \in I^Y$.

A function $f: X \to Y$ is called smooth open (resp., smooth closed) with respect to τ and σ [7] if $\tau(A) \leq \sigma(f(A))$ (resp., $\tau^*(A) \leq \sigma^*(f(A))$) for every $A \in I^X$.

THEOREM 2.2 [3]. Let (X, τ) and (Y, σ) be two smooth topological spaces and $A \in I^X$. If a function $f: X \to Y$ is smooth open with respect to τ and σ , then $f(A^o) \subseteq (f(A))^o$.

A function $f: X \to Y$ is called smooth preserving (resp., strict smooth preserving) with respect to τ and σ [5] if $\sigma(A) \geq \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \geq \tau(f^{-1}(B))$ (resp., $\sigma(A) > \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \tau(f^{-1}(B))$) for every $A, B \in I^Y$.

If $f: X \to Y$ is a smooth preserving function (resp., a strict smooth preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) \ge \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) > \tau^*(f^{-1}(B))$) for every $A, B \in I^Y$ [5].

A function $f: X \to Y$ is called smooth open preserving (resp., strict smooth open preserving) with respect to τ and σ [5] if $\tau(A) \ge \tau(B) \Rightarrow \sigma(f(A)) \ge \sigma(f(B))$ (resp., $\tau(A) > \tau(B) \Rightarrow \sigma(f(A)) > \sigma(f(B))$) for every $A, B \in I^X$.

3. Types of weak smooth compactness

Demirci [4] defined the families $W(\tau) = \{A \in I^X : A = A^o\}$ and $W^*(\tau) = \{A \in I^X : A = \overline{A}\}$, where (X,τ) is a s.t.s. Note that $A \in W(\tau) \Leftrightarrow A^c \in W^*(\tau)$. In this section, we introduce topological concepts of a s.t.s. in terms of the family $W(\tau)$ and investigate some of their properties.

DEFINITION 3.1 [4]. Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is called weak smooth continuous with respect to τ and σ if $A \in W(\sigma) \Rightarrow f^{-1}(A) \in W(\tau)$ for every $A \in I^Y$.

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is weak smooth continuous with respect to τ and σ if and only if $A \in W^*(\sigma) \Rightarrow f^{-1}(A) \in W^*(\tau)$ for every $A \in I^Y$ [4].

DEFINITION 3.2 [4]. Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is called weak smooth open (resp., weak smooth closed) with respect to τ and σ if $A \in W(\tau) \Rightarrow f(A) \in W(\sigma)$ (resp., $A \in W^*(\tau) \Rightarrow f(A) \in W^*(\sigma)$) for every $A \in I^X$.

Definition 3.3 [4]. A s.t.s. (X,τ) is called weak smooth compact if every family in $W(\tau)$ covering X has a finite subcover.

Note that a weak smooth compact s.t.s. (X, τ) is smooth compact.

THEOREM 3.4 [4]. Let (X, τ) and (Y, σ) be two smooth topological spaces and $f: X \to Y$ a surjective and weak smooth continuous function with respect to τ and σ . If (X, τ) is weak smooth compact, then so is (Y, σ) .

THEOREM 3.5. Let (X, τ) and (Y, σ) be two smooth topological spaces. If a function $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , then $f: X \to Y$ is weak smooth continuous with respect to τ and σ .

PROOF. Let $f: X \to Y$ be a quasi-smooth continuous function with respect to τ and σ . Then by Theorem 2.1 $f^{-1}(A^o) \subseteq (f^{-1}(A))^o$ for every $A \in I^Y$. Let $A \in W(\sigma)$, i.e., $A = A^o$. Then $f^{-1}(A) = f^{-1}(A^o) \subseteq (f^{-1}(A))^o$. From the definition of smooth interior we have $(f^{-1}(A))^o \subseteq f^{-1}(A)$. Hence $f^{-1}(A) = (f^{-1}(A))^o$, i.e., $f^{-1}(A) \in W(\tau)$. Therefore $f: X \to Y$ is weak smooth continuous with respect to τ and σ .

We obtain the following corollary from Theorem 3.4 and 3.5.

COROLLARY 3.6. Let (X,τ) and (Y,σ) be two smooth topological spaces and $f: X \to Y$ a surjective and quasi-smooth continuous function with respect to τ and σ . If (X,τ) is weak smooth compact, then so is (Y,σ) .

DEFINITION 3.7. A s.t.s. (X,τ) is called weak smooth nearly compact if for every family $\{A_i: i \in J\}$ in $W(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{A_i})^{\circ} = 1_X$.

DEFINITION 3.8. A s.t.s. (X, τ) is called weak smooth almost compact if for every family $\{A_i : i \in J\}$ in $W(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{A_i} = 1_X$.

THEOREM 3.9. A weak smooth compact s.t.s. (X, τ) is weak smooth nearly compact.

PROOF. Let $\{A_i : i \in J\}$ be a family in $W(\tau)$ covering X. Since (X,τ) is weak smooth compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} A_i = 1_X$. Since $A_i \in W(\tau)$ for each $i \in J$, we have $A_i = A_i^o$ for each $i \in J$. From Proposition 3.1 [3] we have $A_i = A_i^o \subseteq (\overline{A_i})^o$ for each $i \in J$. Thus $1_X = \bigcup_{i \in J_0} A_i \subseteq \bigcup_{i \in J_0} (\overline{A_i})^o$, i.e., $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_X$. Hence (X,τ) is weak smooth nearly compact.

THEOREM 3.10. A weak smooth nearly compact s.t.s. (X, τ) is weak smooth almost compact.

PROOF. Let $\{A_i : i \in J\}$ be a family in $W(\tau)$ covering X. Since (X,τ) is weak smooth nearly compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_X$. Since $(\overline{A_i})^o \subseteq \overline{A_i}$ for each $i \in J$ by Proposition 3.2 [3], $1_X = \bigcup_{i \in J_0} (\overline{A_i})^o \subseteq \bigcup_{i \in J_0} \overline{A_i}$. So $\bigcup_{i \in J_0} \overline{A_i} = 1_X$. Hence (X,τ) is weak smooth almost compact.

THEOREM 3.11. Let (X, τ) and (Y, σ) be two smooth topological spaces and $f: X \to Y$ a surjective and quasi-smooth continuous function with respect to τ and σ . If (X, τ) is weak smooth almost compact, then so is (Y, σ) .

PROOF. Let $\{A_i: i \in J\}$ be a family in $W(\sigma)$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is quasismooth continuous with respect to τ and σ , f is weak smooth continuous with respect to τ and σ by Theorem 3.5. Hence $f^{-1}(A_i) \in W(\tau)$ for each $i \in J$. Since (X, τ) is weak smooth almost compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{f^{-1}(A_i)} = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} \overline{f^{-1}(A_i)}) = \bigcup_{i \in J_0} f(\overline{f^{-1}(A_i)})$. Since $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , from Theorem 2.1 we have $\overline{f^{-1}(A_i)} \subseteq f^{-1}(\overline{A_i})$ for each $i \in J$. Hence $1_Y = \bigcup_{i \in J_0} f(\overline{f^{-1}(A_i)}) \subseteq \bigcup_{i \in J_0} f(f^{-1}(\overline{A_i})) = \bigcup_{i \in J_0} \overline{A_i}$, i.e., $\bigcup_{i \in J_0} \overline{A_i} = 1_Y$. Thus (Y, σ) is weak smooth almost compact.

THEOREM 3.12 Let (X, τ) and (Y, σ) be two smooth topological spaces and $f: X \to Y$ a surjective, quasi-smooth continuous and smooth

open function with respect to τ and σ . If (X, τ) is weak smooth nearly compact, then so is (Y, σ) .

PROOF. Let $\{A_i: i \in J\}$ be a family in $W(\sigma)$ covering Y, i.e., $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is quasismooth continuous with respect to τ and σ , f is weak smooth continuous with respect to τ and σ by Theorem 3.5. Hence $f^{-1}(A_i) \in W(\tau)$ for each $i \in J$. Since (X,τ) is weak smooth nearly compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} (\overline{f^{-1}(A_i)})^o = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} (\overline{f^{-1}(A_i)})^o) = \bigcup_{i \in J_0} f((\overline{f^{-1}(A_i)})^o)$. Since $f: X \to Y$ is smooth open with respect to τ and σ , from Theorem 2.2 we have $f((\overline{f^{-1}(A_i)})^o) \subseteq (f(\overline{f^{-1}(A_i)}))^o$ for each $i \in J$. Since $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , from Theorem 2.1 we have $\overline{f^{-1}(A_i)} \subseteq f^{-1}(\overline{A_i})$ for each $i \in J$. Hence $1_Y = \bigcup_{i \in J_0} f((\overline{f^{-1}(A_i)}))^o \subseteq \bigcup_{i \in J_0} (f(\overline{f^{-1}(A_i)}))^o \subseteq \bigcup_{i \in J_0} (f(\overline{f^{-1}(A_i)}))^o = \bigcup_{i \in J_0} (\overline{A_i})^o$, i.e., $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_Y$. Thus (Y,σ) is weak smooth nearly compact.

4. Types of weak smooth α -compactness

In this section, we introduce topological concepts of a s.t.s. in terms of the family $W_{\alpha}(\tau)$ and investigate some of their properties.

DEFINITION 4.1 [6]. Let (X,τ) be a s.t.s., $\alpha \in [0,1)$ and $A \in I^X$. The τ -smooth α -closure (resp., τ -smooth α -interior) of A, denoted by \overline{A}_{α} (resp., A_{α}^o), is defined by $\overline{A}_{\alpha} = \cap \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$ (resp., $A_{\alpha}^o = \cup \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$).

We define the families $W_{\alpha}(\tau) = \{A \in I^X : A = A_{\alpha}^o\}$ and $W_{\alpha}^*(\tau) = \{A \in I^X : A = \overline{A}_{\alpha}\}$, where (X, τ) is a s.t.s. Note that $A \in W_{\alpha}(\tau) \Leftrightarrow A^c \in W_{\alpha}^*(\tau)$.

DEFINITION 4.2. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. A function $f:X \to Y$ is called weak smooth α -continuous with respect to τ and σ if $A \in W_{\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{\alpha}(\tau)$ for every $A \in I^Y$.

THEOREM 4.3. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ if and only if $A \in W_{\alpha}^*(\sigma) \Rightarrow f^{-1}(A) \in W_{\alpha}^*(\tau)$ for every $A \in I^Y$.

PROOF. The proof follows directly from the definitions of $W_{\alpha}(\tau)$, $W_{\alpha}^{*}(\tau)$ and Definition 4.2.

DEFINITION 4.4. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. A function $f:X \to Y$ is called weak smooth α -open (resp., weak smooth α -closed) with respect to τ and σ if $A \in W_{\alpha}(\tau) \Rightarrow f(A) \in W_{\alpha}(\sigma)$ (resp., $A \in W_{\alpha}^{*}(\tau) \Rightarrow f(A) \in W_{\alpha}^{*}(\sigma)$) for every $A \in I^{X}$.

DEFINITION 4.5. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak smooth α -compact if every family in $W_{\alpha}(\tau)$ covering X has a finite subcover.

Note that a weak smooth α -compact s.t.s. (X, τ) is smooth compact.

THEOREM 4.6. Let $\alpha \in [0,1)$. Then a s.t.s. (X,τ) is weak smooth α -compact if and only if every family in $W^*_{\alpha}(\tau)$ having the finite intersection property has a non-empty intersection.

PROOF. Let (X,τ) be a weak smooth α -compact s.t.s. and let $\{A_i:i\in J\}$ be a family in $W_{\alpha}^*(\tau)$ having the finite intersection property, i.e., for any finite subset $J_0\subseteq J,\ \cap_{i\in J_0}A_i\neq 0_X$. Now suppose that $\cap_{i\in J}A_i=0_X$. Then $\cup_{i\in J}A_i^c=1_X$. Since $\{A_i:i\in J\}\subseteq W_{\alpha}^*(\tau)$, i.e., $\{A_i^c:i\in J\}\subseteq W_{\alpha}(\tau)$ and (X,τ) is a weak smooth α -compact s.t.s., there exists a finite subset $J_0\subseteq J$ such that $\cup_{i\in J_0}A_i^c=1_X$. Hence $\cap_{i\in J_0}A_i=0_X$, which is a contradiction.

Conversely, suppose that every family in $W_{\alpha}^*(\tau)$ having the finite intersection property has a non-empty intersection and (X,τ) is not a weak smooth α -compact s.t.s. Then there exists a family $\{A_i:i\in J\}$ in $W_{\alpha}(\tau)$ covering X such that for any finite subset $J_0\subseteq J, \cup_{i\in J_0}A_i\neq 1_X$, i.e., $\cap_{i\in J_0}A_i^c\neq 0_X$. Since $\{A_i:i\in J\}\subseteq W_{\alpha}(\tau)$, we have $\{A_i^c:i\in J\}\subseteq W_{\alpha}^*(\tau)$. Hence the family $\{A_i^c:i\in J\}$ has the finite intersection property. From the hypothesis we have $\cap_{i\in J}A_i^c\neq 0_X$. Hence $\cup_{i\in J}A_i\neq 1_X$, which is a contradiction.

THEOREM 4.7. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective and weak smooth α -continuous function with respect to τ and σ . If (X, τ) is weak smooth α -compact, then so is (Y, σ) .

PROOF. Let $\{A_i : i \in J\}$ be a family in $W_{\alpha}(\sigma)$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $\bigcup_{i \in J} f^{-1}(A_i) = f^{-1}(1_Y) = 1_X$. Since $f : X \to Y$ is weak smooth α -continuous with respect to τ and σ , $\{f^{-1}(A_i) : i \in J\} \subseteq W_{\alpha}(\tau)$. Since (X, τ) is weak smooth α -compact, there exists a finite

subset $J_0 \subseteq J$ such that $\bigcup_{i \in J_0} f^{-1}(A_i) = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} f^{-1}(A_i)) = \bigcup_{i \in J_0} f(f^{-1}(A_i)) = \bigcup_{i \in J_0} A_i$. Therefore (Y, σ) is weak smooth α -compact.

DEFINITION 4.8 [6]. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. A function $f:X \to Y$ is called smooth α -preserving (resp., strict smooth α -preserving) with respect to τ and σ if $\sigma(A) \geq \alpha \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \geq \alpha \tau(f^{-1}(B))$ (resp., $\sigma(A) > \alpha \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \alpha \tau(f^{-1}(B))$) for every $A, B \in I^Y$.

A function $f: X \to Y$ is called smooth open α -preserving (resp., strict smooth open α -preserving) with respect to τ and σ if $\tau(A) \ge \alpha \tau(B) \Rightarrow \sigma(f(A)) \ge \alpha \sigma(f(B))$ (resp., $\tau(A) > \alpha \tau(B) \Rightarrow \sigma(f(A)) > \alpha \sigma(f(B))$) for every $A, B \in I^X$.

THEOREM 4.9. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. If a function $f: X \to Y$ is strict smooth α -preserving with respect to τ and σ , then $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ .

PROOF. Let $f: X \to Y$ be a strict smooth α -preserving function with respect to τ and σ . Then by Theorem 3.13 [6] $f^{-1}(A^o_\alpha) \subseteq (f^{-1}(A))^o_\alpha$ for every $A \in I^Y$. Let $A \in W_\alpha(\sigma)$, i.e., $A = A^o_\alpha$. Then by the above result $f^{-1}(A) = f^{-1}(A^o_\alpha) \subseteq (f^{-1}(A))^o_\alpha$. From Theorem 3.5 [6] we have $f^{-1}(A) = (f^{-1}(A))^o_\alpha$, i.e., $f^{-1}(A) \in W_\alpha(\tau)$. Therefore $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ .

We obtain the following corollary from Theorem 4.7 and 4.9.

COROLLARY 4.10. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective and strict smooth α -preserving function with respect to τ and σ . If (X, τ) is weak smooth α -compact, then so is (Y, σ) .

DEFINITION 4.11. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak smooth nearly α -compact if for every family $\{A_i : i \in J\}$ in $W_{\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^{\circ} = 1_X$.

DEFINITION 4.12. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak smooth almost α -compact if for every family $\{A_i : i \in J\}$ in $W_{\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_X$.

A smooth topology $\tau: I^X \to I$ on X is called monotonic increasing (resp., monotonic decreasing) if $A \subseteq B \Rightarrow \tau(A) \leq \tau(B)$ (resp., $A \subseteq B \Rightarrow \tau(A) \geq \tau(B)$) for every $A, B \in I^X$ [6].

THEOREM 4.13. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and τ a monotonic decreasing smooth topology. If (X, τ) is weak smooth α -compact, then (X, τ) is weak smooth nearly α -compact.

PROOF. Let $\{A_i: i \in J\}$ be a family in $W_{\alpha}(\tau)$ covering X. Since (X,τ) is weak smooth α -compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} A_i = 1_X$. Since $A_i \in W_{\alpha}(\tau)$ for each $i \in J$, $A_i = (A_i)^o_{\alpha}$ for each $i \in J$. Since τ is monotonic decreasing and $A_i \subseteq \overline{(A_i)}_{\alpha}$ for each $i \in J$, $\tau(A_i) \geq \tau(\overline{(A_i)}_{\alpha})$ for each $i \in J$. Hence from Theorem 3.2 [6] we have $A_i = (A_i)^o_{\alpha} \subseteq (\overline{(A_i)}_{\alpha})^o_{\alpha}$ for each $i \in J$. Thus $1_X = \cup_{i \in J_0} A_i \subseteq \cup_{i \in J_0} (\overline{(A_i)}_{\alpha})^o_{\alpha}$, i.e., $\cup_{i \in J_0} (\overline{(A_i)}_{\alpha})^o_{\alpha} = 1_X$. Hence (X,τ) is weak smooth nearly α -compact.

THEOREM 4.14. Let $\alpha \in [0,1)$. Then a weak smooth nearly α -compact s.t.s. (X,τ) is weak smooth almost α -compact.

PROOF. Let $\{A_i : i \in J\}$ be a family in $W_{\alpha}(\tau)$ covering X. Since (X,τ) is weak smooth nearly α -compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o = 1_X$. Since $(\overline{(A_i)}_{\alpha})_{\alpha}^o \subseteq \overline{(A_i)}_{\alpha}$ for each $i \in J$ by Theorem 3.5 [6], $1_X = \bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o \subseteq \bigcup_{i \in J_0} \overline{(A_i)}_{\alpha}$. So $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_X$. Hence (X,τ) is weak smooth almost α -compact. \square

THEOREM 4.15. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$ and $f: X \to Y$ a surjective and strict smooth α -preserving function with respect to τ and σ . If (X,τ) is weak smooth almost α -compact, then so is (Y,σ) .

PROOF. Let $\{A_i: i\in J\}$ be a family in $W_{\alpha}(\sigma)$ covering Y, i.e., $\cup_{i\in J}A_i=1_Y$. Then $1_X=f^{-1}(1_Y)=\cup_{i\in J}f^{-1}(A_i)$. Since f is strict smooth α -preserving with respect to τ and σ , f is weak smooth α -continuous with respect to τ and σ by Theorem 4.9. Hence $f^{-1}(A_i)\in W_{\alpha}(\tau)$ for each $i\in J$. Since (X,τ) is weak smooth almost α -compact, there exists a finite subset J_0 of J such that $\cup_{i\in J_0}\overline{(f^{-1}(A_i))_{\alpha}}=1_X$. From the surjectivity of f we have $1_Y=f(1_X)=f(\cup_{i\in J_0}\overline{(f^{-1}(A_i))_{\alpha}})=\bigcup_{i\in J_0}f(\overline{(f^{-1}(A_i))_{\alpha}})$. Since $f:X\to Y$ is strict smooth α -preserving with respect to τ and σ , from Theorem 3.13 [6] we have $\overline{(f^{-1}(A_i))_{\alpha}}\subseteq$

 $f^{-1}(\overline{(A_i)}_{\alpha})$ for each $i \in J$. Hence

$$1_Y = \cup_{i \in J_0} f(\overline{(f^{-1}(A_i))}_{\alpha}) \subseteq \cup_{i \in J_0} f(f^{-1}(\overline{(A_i)}_{\alpha})) = \cup_{i \in J_0} \overline{(A_i)}_{\alpha},$$

i.e., $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_Y$. Thus (Y, σ) is weak smooth almost α -compact.

THEOREM 4.16. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective, strict smooth α -preserving and strict smooth open α -preserving function with respect to τ and σ . If (X, τ) is weak smooth nearly α -compact, then so is (Y, σ) .

PROOF. Let $\{A_i: i \in J\}$ be a family in $W_{\alpha}(\sigma)$ covering Y, i.e., $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is strict smooth α -preserving with respect to τ and σ , f is weak smooth α -continuous with respect to τ and σ by Theorem 4.9. Hence $f^{-1}(A_i) \in W_{\alpha}(\tau)$ for each $i \in J$. Since (X,τ) is weak smooth nearly α -compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} (\overline{(f^{-1}(A_i))_{\alpha}})_{\alpha}^o = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} (\overline{(f^{-1}(A_i))_{\alpha}})_{\alpha}^o) = \bigcup_{i \in J_0} f((\overline{(f^{-1}(A_i))_{\alpha}})_{\alpha}^o)$. Since $f: X \to Y$ is strict smooth open α -preserving with respect to τ and σ , from Theorem 3.14 [6] we have $f((\overline{(f^{-1}(A_i))_{\alpha}})_{\alpha}^o) \subseteq (f(\overline{(f^{-1}(A_i))_{\alpha}})_{\alpha}^o)$ for each $i \in J$. Since $f: X \to Y$ is strict smooth α -preserving with respect to τ and σ , from Theorem 3.13 [6] we have $\overline{(f^{-1}(A_i))_{\alpha}} \subseteq f^{-1}(\overline{(A_i)_{\alpha}})$ for each $i \in J$. Hence

$$1_Y = \bigcup_{i \in J_0} f((\overline{(f^{-1}(A_i))}_{\alpha})_{\alpha}^o) \subseteq \bigcup_{i \in J_0} (f(\overline{(f^{-1}(A_i))}_{\alpha}))_{\alpha}^o$$
$$\subseteq \bigcup_{i \in J_0} (f(f^{-1}(\overline{(A_i)}_{\alpha})))_{\alpha}^o = \bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o,$$

i.e.,

$$\cup_{i\in J_0}(\overline{(A_i)}_\alpha)^o_\alpha=1_Y.$$

Thus (Y, σ) is weak smooth nearly α -compact.

References

- R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986).
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems 90 (1997), 83–88.
- [4] _____, Three topological structures of smooth topological spaces, Fuzzy Sets and Systems 101 (1999), 185–190.

- [5] M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems 62 (1994), 193-202.
- [6] C. K. Park, W. K. Min and M. H. Kim, α -compactness in smooth topological spaces, Int. J. Math. and Math. Sci. **2003** (2003), no. 46, 2897–2906.
- [7] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea E-mail: ckpark@kangwon.ac.kr wkmin@cc.kangwon.ac.kr kimmw@kangwon.ac.kr