DERIVATIONS ON CR MANIFOLDS

JEONG SEOG RYU AND SEUNGHUN YI

ABSTRACT. We studied the relation between the tangential Cauchy-Riemann operator $\overline{\partial}_b$ on CR-manifolds and the derivation $d^{\pi^{0,1}}$ associated to the natural projection map $\pi^{0,1}:TM\otimes\mathbb{C}=T^{1,0}\oplus T^{0,1}\to T^{0,1}$. We found that these two differential operators agree only on the space of functions $\Omega^0(M)$, unless $T^{1,0}$ is involutive as well. We showed that the difference is a derivation, which vanishes on $\Omega^0(M)$, and it is induced by the Nijenhuis tensor associated to $\pi^{0,1}$.

1. Introduction

On a smooth manifold M the most important differential operator is the exterior differential operator d, and it is the only "natural" first order operator up to a multiplicative scalar ([3]). But if we consider manifolds with more structure, we are naturally led to other differential operators. For example, we consider Cauchy-Riemann operator $\overline{\partial}$ for complex manifolds and tangential Cauchy-Riemann operator $\overline{\partial}_b$ for CR-manifolds. These are derivations of degree 1.

H.-J. Kim considered derivations of degree 1 on the set of smooth functions $\Omega^0(M) := C^{\infty}(M,\mathbb{R})$ ([1]). For each endomorphism $F: TM \to TM$, he associated a derivation d^F on $\Omega^0(M)$,

$$d^F f(X) := F(X)f = df(F(X)),$$

and showed that the set of all derivations of degree 1 on $\Omega^0(M)$ is isomorphic to the set of all endomorphisms of TM. Thus $\overline{\partial}$ and $\overline{\partial}_b$ on $\Omega^0(M)$ can be understood as a derivation $d^{\pi^{0,1}}$ associated to the natural projection map

$$\pi^{0,1}: TM \otimes \mathbb{C} = T^{1,0} \oplus T^{0,1} \to T^{0,1}.$$

Received November 13, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 32W10, 13N15.

Key words and phrases: derivation, tangential Cauchy-Riemann operator, CR-manifold.

Any derivation D on $\Omega^0(M)$ can be extended to a derivation on differential forms with the property $D \circ d + d \circ D = 0$ and its extension is unique ([1], [2]). Thus we may ask whether $\overline{\partial}$ (or $\overline{\partial}_b$) and $d^{\pi^{0,1}}$ agree as derivations on differential forms. However, for $D = \overline{\partial}$ (or $\overline{\partial}_b$), the condition $D \circ d + d \circ D = 0$ involves the integrability of $T^{0,1}$ and $T^{1,0}$ as well. Thus $\overline{\partial}_b$ on CR-manifolds may not agree with $d^{\pi^{0,1}}$ unless $T^{1,0}$ is involutive, which is not in general.

In this paper we will compare $\overline{\partial}_b$ and $d^{\pi^{0,1}}$ on CR-manifolds and relate the difference of them, which is a derivation vanishing on $\Omega^0(M)$, to the Nijenhuis tensor associated to $\pi^{0,1}$.

We would like to thank J. Park, D. Joe, H. Chae for their discussions and comments.

2. Derivations

Let M be a smooth manifold. We use $\Omega^k(M)$ to denote the space of smooth sections $C^\infty(M, \wedge^k T^*M)$ and consider the graded commutative algebra $\Omega(M) = \oplus \Omega^k(M)$ of differential forms on M. We denote by $\mathrm{Der}_k\Omega(M)$ the space of all graded derivations of degree k, that is, all linear mappings $D:\Omega(M)\to\Omega(M)$ such that $D(\Omega^l(M))\subset\Omega^{k+l}(M)$ and

$$D(\phi \wedge \psi) = D(\phi) \wedge \psi + (-1)^{kl} \phi \wedge D(\psi),$$

for $\phi \in \Omega^l(M)$, $\psi \in \Omega^m(M)$. Then the space $\operatorname{Der} \Omega(M) := \oplus \operatorname{Der}_k \Omega(M)$ is a graded Lie algebra with the graded commutator

$$[D_1, D_2] := D_1 \circ D_2 - (-1)^{k_1 k_2} D_2 \circ D_1.$$

This bracket satisfies the graded Jacobi identity

$$[D_1, [D_2, D_3]] = [[D_1, D_2], D_3] + (-1)^{k_1 k_2} [D_2, [D_1, D_3]]$$

so that $ad(D_1) := [D_1,]$ is a derivation of degree k_1 .

A derivation $D \in \operatorname{Der}_k\Omega(M)$ is called algebraic if $D \equiv 0$ on $\Omega^0(M)$. Then $D(f\omega) = fD(\omega)$ for $f \in \Omega^0(M)$. So it induces a derivation $D_x \in \operatorname{Der}_k(\wedge T_x^*M)$ for each $x \in M$. It is uniquely determined by its restriction to 1-forms $D_x|_{T_x^*M}: T_x^*M \to \wedge^{k+1}T_x^*M$, which may be viewed as an element $K_x \in \wedge^{k+1}T_x^*M \otimes T_xM$ depending smoothly on $x \in M$. To express this dependence we write $D = \iota_K$, where $K \in \Omega^{k+1}(M,TM) := C^\infty(M, \wedge^{k+1}T^*M \otimes TM)$. Note the defining equation $\iota_K(\omega) = \omega \circ K$ for $\omega \in \Omega^1(M)$. By applying it to an exterior product of 1-forms, one

can derive the formula for l-forms;

$$\iota_K(\omega)(X_1,\ldots,X_{k+l}) = \frac{1}{(k+1)!(l-1)!} \sum_{\sigma \in S_{k+l}} \operatorname{sign}(\sigma) \omega(K(X_{\sigma(1)},\ldots,X_{\sigma(k+1)}),X_{\sigma(k+2)},\ldots).$$

The exterior derivative d is a derivation of degree 1. We define the Lie derivation $\mathcal{L}_K := [\iota_K, d]$ for a tensor field $K \in \Omega^k(M, TM)$ similar to $\mathcal{L}_X = \iota_X \circ d + d \circ \iota_X = [\iota_X, d]$ for the vector field X. Then the mapping $\mathcal{L} : \Omega(M, TM) \to \operatorname{Der}\Omega(M)$ is injective, since $\mathcal{L}_K f = \iota_K \circ df = df \circ K$ for $f \in C^{\infty}(M, \mathbb{R})$. However \mathcal{L} is not surjective, which is explained in the following;

THEOREM 2.1. ([2]) For any graded derivation $D \in \operatorname{Der}_k\Omega(M)$ there are unique $K \in \Omega^k(M,TM)$ and $L \in \Omega^{k+1}(M,TM)$ such that

$$D = \mathcal{L}_K + \iota_L.$$

Moreover, L = 0 if and only if [D, d] = 0. D is algebraic if and only if K = 0.

We denote by d^F the derivation of degree 1 on $\Omega^0(M)$ associated to an endomorphism $F:TM\to TM$. It can be extended to a derivation on differential forms with the property $d^F\circ d+d\circ d^F=0$. Then the extension of d^F can be written explicitly ([1]);

$$d^{F}\omega(X_{0},\cdots,X_{k}) = \sum_{i} (-1)^{i} F(X_{i})\omega(X_{0},\cdots,\widehat{X}_{i},\cdots,X_{k})$$
$$+ \sum_{i< j} (-1)^{i+j} \omega([X_{i},X_{j}]_{F},X_{0},\cdots,\widehat{X}_{i},\cdots,\widehat{X}_{i},\cdots,X_{k}),$$

where

$$[X,Y]_F := [FX,Y] + [X,FY] - F[X,Y].$$

Since $d^F \circ d + d \circ d^F = [d^F, d] = 0$, d^F is in fact \mathcal{L}_F in theorem 2.1.

3. Tangential Cauchy-Riemann operator

We consider a (2n+1)-dimensional real smooth manifold M and an n-dimensional complex subbundle \mathcal{Z} of the complexified tangent bundle $TM \otimes \mathbb{C}$. The pair (M, \mathcal{Z}) is called a CR-manifold if

- 1. $\mathbb{Z}_p \cap \overline{\mathbb{Z}_p} = 0$, for all $p \in M$,
- 2. \mathcal{Z} is involutive, that is, $[Z_1, Z_2]$ belongs to \mathcal{Z} whenever $Z_1, Z_2 \in \mathcal{Z}$.

There is a complex structure map J defined on the real subbundle $H \subset TM$ so that $H \otimes \mathbb{C} = \mathcal{Z} \oplus \overline{\mathcal{Z}}$ and $\mathcal{Z}, \overline{\mathcal{Z}}$ are the eigenspaces of extension of J to $H \otimes \mathbb{C}$ with the eigenvalues i, -i, respectively. The tangential Cauchy-Riemann operator $\overline{\partial}_b$ is defined by

$$\overline{\partial}_b f := df|_{\overline{\mathcal{Z}}}.$$

It will be necessary to choose a complementary subbundle to $\mathcal{Z} \oplus \overline{\mathcal{Z}}$ to extend $\overline{\partial}_b$ to differential forms. In order to do this, we choose a Hermitian metric on $TM \otimes \mathbb{C}$ so that \mathcal{Z} is orthogonal to $\overline{\mathcal{Z}}$ and let X_p be the orthogonal complement of $\mathcal{Z}_p \oplus \overline{\mathcal{Z}_p}$ in $T_pM \otimes \mathbb{C}$, for each $p \in M$. Then $X(M) = \bigcup_{p \in M} X_p$ forms a subbundle of $TM \otimes \mathbb{C}$.

Define subbundles $T^{0,1}M := \overline{\mathcal{Z}}$ and $T^{1,0}M := \mathcal{Z} \oplus X(M)$. We denote

Define subbundles $T^{0,1}M := \overline{Z}$ and $T^{1,0}M := \mathcal{Z} \oplus X(M)$. We denote by $T^{*\,0,1}M$ and $T^{*\,0,1}M$ the dual spaces of $T^{1,0}M$ and $T^{0,1}M$, respectively. Denote $\wedge^{p,q}T^*M := \wedge^p(T^{*\,1,0}M)\hat{\otimes} \wedge^q(T^{*\,0,1}M)$, then we have the orthogonal decomposition

$$\wedge^r T^* M \otimes \mathbb{C} = \wedge^{r,0} T^* M \oplus \wedge^{r-1,1} T^* M \oplus \cdots \oplus \wedge^{0,r} T^* M.$$

We denote the natural projection map by

$$\pi^{p,q}: \wedge^r T^*M \otimes \mathbb{C} \to \wedge^{p,q} T^*M$$

for p+q=r and the space of smooth sections of $\wedge^{p,q}T^*M$ by $\Omega^{p,q}$. We extend $\overline{\partial}_b$ to $\Omega^{p,q}$ by $\overline{\partial}_b=\pi^{p,q+1}\circ d$.

4. Theorem

We consider a CR-manifold M and denote the natural projection to $T^{0,1}$ by

$$F = \pi^{0,1} : TM \otimes \mathbb{C} = T^{1,0} \oplus T^{0,1} \to T^{0,1}.$$

Note that, for a CR-manifold in general, $T^{0,1}$ is involutive but $T^{1,0}$ may not be involutive. The lack of integrability of $T^{1,0}$ appears in the difference between $\bar{\partial}_b$ and d^F .

THEOREM 4.1. For a CR-manifold M, $d^F - \overline{\partial}_b$ is a nontrivial algebraic derivation unless $T^{1,0}$ is involutive. More explicitly, there is a (2,1) tensor L such that $d^F = \overline{\partial}_b + \iota_L$.

PROOF. It is easy to see that $\overline{\partial}_b f = d^F f$ for a function $f \in \Omega^0(M)$. For 1-forms, we consider 6 cases, according to the types of forms and vector fields. Among them we will explain following 3 cases, since $\overline{\partial}_b \equiv d^F$ as zero in the other cases.

Case 1.
$$\eta \in \Omega^{1,0}, X_1 \in T^{1,0}M \text{ and } X_2 \in T^{0,1}M.$$

Note that $F(X_1) = 0$, $F(X_2) = X_2$, $\eta(X_2) = 0$ and $\eta(F[X_1, X_2]) = 0$.

$$\begin{split} d^F \eta(X_1, X_2) &= F(X_1) \eta(X_2) - F(X_2) \eta(X_1) \\ &- \eta([F(X_1), X_2] + [X_1, F(X_2)] - F([X_1, X_2])) \\ &= 0 - X_2 \eta(X_1) - \eta([0, X_2] + [X_1, X_2] - F([X_1, X_2])) \\ &= X_1 \eta(X_2) - X_2 \eta(X_1) - \eta((1 - F)([X_1, X_2])) \\ &= X_1 \eta(X_2) - X_2 \eta(X_1) - \eta([X_1, X_2]) \\ &= d\eta(X_1, X_2) \\ &= \overline{\partial}_b \eta(X_1, X_2). \end{split}$$

Case 2. $\eta \in \Omega^{0,1}, X_i \in T^{0,1}M$. Note that $F(X_i) = X_i$ and $\eta((1 - F)[X_1, X_2]) = 0$.

$$d^{F}\eta(X_{1}, X_{2}) = F(X_{1})\eta(X_{2}) - F(X_{2})\eta(X_{1})$$

$$- \eta([F(X_{1}), X_{2}] + [X_{1}, F(X_{2})] - F([X_{1}, X_{2}]))$$

$$= X_{1}\eta(X_{2}) - X_{2}\eta(X_{1}) - \eta([X_{1}, X_{2}] + (1 - F)([X_{1}, X_{2}]))$$

$$= X_{1}\eta(X_{2}) - X_{2}\eta(X_{1}) - \eta([X_{1}, X_{2}])$$

$$= d\eta(X_{1}, X_{2})$$

$$= \overline{\partial}_{b}\eta(X_{1}, X_{2}).$$

Case 3. $\eta \in \Omega^{0,1}$, $X_i \in T^{1,0}M$. Note that $F(X_i) = 0$.

$$\begin{split} d^F \eta(X_1, X_2) &= F(X_1) \eta(X_2) - F(X_2) \eta(X_1) \\ &- \eta([F(X_1), X_2] + [X_1, F(X_2)] - F([X_1, X_2])) \\ &= \eta(F[X_1, X_2]). \end{split}$$

Note that, in Case 3, $\eta(F[X_1, X_2]) \neq 0$ unless $T^{1,0}$ is involutive, while $\overline{\partial}_b \eta(X_1, X_1) = 0$ for all $\eta \in \Omega^{0,1}$ and $X_1, X_2 \in T^{1,0}$. Therefore we can write

$$d^{F}\eta(X_{1}, X_{2}) = \overline{\partial}_{b}\eta(X_{1}, X_{2}) + \eta(F[(1 - F)X_{1}, (1 - F)X_{2}]).$$

We now show that L(X,Y) := F[(1-F)X,(1-F)Y] is a tensor of type (2,1). Note that F(1-F) = 0, for F is a projection.

$$\begin{split} L(fX,Y) &= F[(1-F)fX, (1-F)Y] \\ &= F[f(1-F)X, (1-F)Y] \\ &= F\{f[(1-F)X, (1-F)Y] - (((1-F)Y)f)(1-F)X\} \\ &= fF[(1-F)X, (1-F)Y] - F(1-F)(((1-F)Y)f)X \\ &= fF[(1-F)X, (1-F)Y], \end{split}$$

for a function f. Thus L is a tensor.

We denote the Nijenhuis tensor associated to F by

$$N_F(X,Y) := [FX,FY] - F[FX,Y] - F[X,FY] + F^2[X,Y].$$

Remark 4.2. Since $T^{0,1}$ is involutive, L is in fact the Nijenhuis tensor. Note that $F^2 = F$, $[FX, FY] \in T^{0,1}$. Thus

$$\begin{split} L(X,Y) &= F[(1-F)X, (1-F)Y] \\ &= F\{[X,Y] - [FX,Y] - [X,FY] + [FX,FY]\} \\ &= F[X,Y] - F[FX,Y] - F[X,FY] + F[FX,FY] \\ &= F^2[X,Y] - F[FX,Y] - F[X,FY] + [FX,FY] \\ &= N_F(X,Y). \end{split}$$

References

- H.-J. Kim, Curvatures and complex structures, J. Korean Math. Soc. 24 (1987), 99-104.
- [2] I. Kolář, P. W. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- [3] R. Palais, Natural operators on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125-141.

Jeong Seog Ryu
Department of Mathematics Education
College of Education
Hongik University
Seoul 121-791, Korea
E-mail: jsryu@math.hongik.ac.kr

Seunghun Yi Faculty of Science and Liberal Arts(Mathematics) Youngdong University YoungDong 370-701, Korea E-mail: seunghun@ns.youngdong.ac.kr