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HARDY-LITTLEWOOD PROPERTY
WITH THE INNER LENGTH METRIC

Kiwon KiM

ABSTRACT. A result of Hardy and Littlewood relates Holder con-
tinuity of analytic functions in the unit disk with a bound on the
derivative. Gehring and Martio extended this result to the class
of uniform domains. We call it the Hardy-Littlewood property.
Langmeyer further extended their result to the class of John disks
in terms of the inner length metric. We call it the Hardy-Littlewood
property with the inner length metric. In this paper we give several
properties of a domain which satisfies the Hardy-Littlewood prop-
erty with the inner length metric. Also we show some results on
the Holder continuity of conjugate harmonic functions in various
domains.

1. Introduction

Suppose that D is a domain in the complex plane C. Let B(z,r) =
{w: |lw—2z| <r}for z € Candr >0 and let B=B(0,1) be the unit
disk in C. Let £(v) denote the euclidean length of a curve «, dia(y) be
a diameter of v and dist(A, B) denote the euclidian distance from A to
B for two sets A, B C C. Let « € (0, 1].

Suppose that f is a real or complex valued function defined in D. We
say that f is in the Lipschitz class, Lipo(D), 0 < a < 1, if there exists
a constant m such that

(1.1) |f(21) — f22)| < mlzy — 22|

for all z; and 23 in D, and we let || f||o denote the infimum of the numbers
m for which (1.1) holds. f is said to belong to the local Lipschitz class,
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locLipo (D), if there is a constant m such that (1.1) holds whenever
21, 22 lie in any open disk which is contained in D. Let |[f{|%¢ denote
the infimum of the numbers m such that (1.1) holds in this situation.

DEFINITION 1.1. A domain D is called a Lip,-extension domain
if there exists a constant ¢ depending on D and «a such that f €
locLip, (D) implies f € Lip, (D) with

[1flle < allFII5°

Suppose that f is analytic in D. If f is in Lip, (D), then it is not
difficult to show that

If/(2)] < mdist(z,dD)*?
in D. Conversely, we have the following well known result of Hardy and

Littlewood.
THEOREM 1.2. [5] If D is an open disk and f is analytic in D with

|#(2)| < mdist(z,8D)>"*

for all z in D and for every o € (0,1], then f € Lip, (D) with

cm
< 7

Hf”a — i

a
where c is an absolute constant.
The above theorem leads to the following notion, introduced in (3].

DEFINITION 1.3. A proper subdomain D in C is said to have the
Hardy-Littlewood property if there exists a constant ¢ = ¢(D) such that
whenever f is analytic in D and f satisfies the condition

(1.2) |f'(2)| < mdist(z,0D)>*

in D for every « € (0, 1], then f € Lip,(D) with

cm
flle < —

Theorem 1.2 tells that each open disk has the Hardy-Littlewood prop-
erty. In [3, Corollary 2.2] it is proved moreover that uniform domains,
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defined below, have the Hardy-Littlewood property and it is showed
that there exist domains having the Hardy-Littlewood property without
being uniform [9].

A domain D in C is said to be b-uniform if there exists a constant
b > 1 such that each pair of points z; and 22 in D can be joined by a
rectifiable arc v in D with

() < b2y — 2o
and with
(1.3) min(4(y1), 4(v2)) < bdist(z,0D)

for each z € v, where v; and 2 are the components of v\ {z}.

Next we say that a proper subdomain D in C has the Hardy- Littlewood
property of order o for some a € (0,1], if there exists a constant k =
k(D,a) such that if { is analytic in D with (1.2) for all z € D, then
[ € Lipo (D) with |[f||o < km .

It is clear that if D has the Hardy-Littlewood property, then D has
the Hardy-Littlewood property of order a for each o € (0,1]. But the
opposite implication does not hold in general [1].

Next in [1] they give a characterization of a domain which has the
Hardy-Littlewood property with order « as follows.

THEOREM 1.4. [1] A simply connected domain D in C has the Hardy-
Littlewood property with order a € (0,1} if and only if D is a Lip,-
extension domain.

On the other hands, in [8] it is showed that the Hardy-Littlewood
property does not hold for John disks, defined below.

A simply connected bounded domain D C C is said to be a b-John
disk if there exist a point zg € D and a constant b > 1 such that each
point z; € D can be joined to zo by an arc v in D satisfying

2(y(z1, z)) < bdist(z, D)

for each z € v, where (21, z) is the subarc of v with endpoints 21, 2.
We call zg a John center, b a John constant and ~v a b-John arc. A
domain D in C is a b-John disk if and only if there is a constant b > 1
such that each pair of points 21,22 € D can be joined by an arc v in D
which satisfies (1.3) [10]. Thus the class of simply connected bounded
uniform domains is properly contained in the class of John disks. The
converse is not true, for example, B \ [0, 1).

But John disks hold analogues of the Hardy-Littlewood property [6],
[8] and an analogue in [8] is explained in terms of the inner length metric.
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THEOREM 1.5. [8] If D is a b-John disk and f is analytic in D and
f satisfies the condition (1.2) in D for some o € (0,1}, then

cm
|f(21) = flz2)] < ”a‘)\D(zla z2)%,
for all z1 and z9 in D, where c is a constant which depends only on b,
)\D(Zl, ZQ) = 1nf€(ﬁ)

Here infimum is taken over all open arcs (8 in D which join z; and z,.

Suppose that f is a real or complex valued function defined in D. We
say that f is in the Lipschitz class with the inner length metric, Lipl (D),
0 < @ < 1, if there exists a constant m; such that

(1.4) |f(z1) = f(22)] < muAp(21, 22)”

for all z; and 2o in D, and we let ||f||} denote the infimum of the
numbers m for which (1.4) holds.
By definition it is clear that if f € Lip, (D), then f € Lipl (D).

DEeFINITION 1.6. A proper subdomain D in C is said to have the
Hardy-Littlewood property with the inner length metric of order o, if
there exists a constant k = k(D, «) such that whenever f is analytic in
D and f satisfies the condition (1.2) in D for some « € (0,1}, then f is
in Lip! (D) with

A% < km.

Clearly a proper subdomain D in C with the Hardy-Littlewood prop-
erty of order a has the Hardy-Littlewood property with the inner length
metric of order «. Also by Theorem 1.5 a John disk has the Hardy-
Littlewood property with the inner length metric of order a.

One of the main subjects of this paper is to find properties of domains
which have the Hardy-Littlewood property with the inner length metric
of order « (see Section 2).

Also in Section 3 we show some results on the Holder continuity of
conjugate harmonic functions in domains introduced above.

2. The Hardy-Littlewood property with the inner length
metric of order «

First of all we show that the converse of Theorem 1.5 is not true.
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THEOREM 2.1. There exists a domain D in C having the Hardy-
Littlewood property with the inner length metric of order o which is
not a John disk.

PROOF. Let G; = B(z;, %) where z; = |z;{e?% and

4=3 27 3 ,
il=1-—4+—, 6;=—(1-277 1=0,1,2,....
|Z]| 2 + \/3_, J 2 ( )’ J )
Next let D = BU U;";O G;. To show that D is not a John disk, let o,
j=0,1,2,..., be a straight crosscut of D joining two points at which
B and G; meet. Let A; and B; denote two subdomains of D divided by
a; with 0 € A; and 2; € B; . Then

min(dia(4;), dia(By)) = dia(B;) = 2a

and .
. 4(b(a—b)(1 —b)(1 +a—10))2
dia(a;) = 1-2%b+a ’
where a = % and b= 47771, By elementary calculation, we have
dia(a;)

for some absolute constant & and hence there is no constant ¢ such that
dia(B;) < cdia(a;)

for all j =0,1,2,.... Thus by [2, Theorem 2.1], D is not a John disk.
But by [9, Corollary 7.11] D satisfies the Hardy-Littlewood property of
order o and thus it has the Hardy-Littlewood property with the inner
length metric of order a. O

Now let us recall the distance functions k, and é, on a domain D,
introduced in [7]. For each a € (0,1] and for z1, z2 in D we define

ko(21,22) = inf/dist(as,aD)o‘_lds,
T Iy

where the infimum is taken over all rectifiable arcs « joining z; to 23 in
D. Furthermore,

0a(z1,22) = SI}plf(zl) — f(z2)],
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where the supremum is taken over all analytic functions f on D satisfying
|f'(2)] < dist(z,0D)* !

for all z € D.
The next theorem characterizes a domain which satisfies the Hardy-
Littlewood property with the inner length metric of order a.

THEOREM 2.2. A domain D in C has the Hardy-Littlewood property
with the inner length metric of order « if and only if there is a constant
M < oo such that for all z,, z2 € D there exists a rectifiable curve vy
joining z, to zo in D with

(2.1) / dist(z, 0D)*~'ds < MAp (21, 22)°.
vy

To prove Theorem 2.2 we need the following Lemma 2.3 which shows
that d,, is connected to the metric k.

LEMMA 2.3. [7] In a simply connected bounded domain D C C we
have

(22) 504 S ka S 015(17

where o € (0,1] and ¢; is an absolute constant.

PROOF OF THEOREM 2.2. Assume that D has the Hardy-Littlewood
property with the inner length metric of order . By the definition of
dqa, the second inequality of (2.2) and

c(D)

|f(z1) — flz2)] < Ap(z1, 22)*
for f analytic in D and |f/(2)| < dist(z,8D)*~! in D, we obtain

c1¢(D)

ka(21,22) < c16a(21,22) = 1 Sl}Plf(Zl) — f(z2)| < Ap(z1, 22)°.

Hence there exists a rectifiable curve v joining z; and 2z, in D such that
(2.1) is satisfied with M = 20%(13). Conversely, assume that there exists
a constant M < oo such that for all z;, 29 € D there exists a rectifiable
curve < joining z; to 25 in D with (2.1). Then by the first inequality
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of (2.2) for all f analytic in D with |f/(2)] < dist(z,8D)*"! in D, we
obtain

|f(z1) — f(z2)| < sup |f(21) — f(22)]

< inf/dist(m,aD)a_lds
T oJy
S M)\D(Zl, Zg)a.

O

THEOREM 2.4. If a domain D in C is a Lip,-extension domain, then
it has the Hardy-Littlewood property with the inner length metric of
order q.

PROOF. In [4, Theorem 2.2] it is showed that a domain D in C is a
Lip,-extension domain if and only if there is a constant M < oo such
that for all 21, 22 € D there exists a rectifiable curve « joining z; to 2o
in D with (2.1) replaced Ap(z1, 22)® by |21 — 22|®. Therefore we get the
conclusion. O

REMARK 2.5. By Theorem 2.1, Theorem 2.4 and definition of the
Hardy-Littlewood property of order «, we observe that the classes of
John domains, Lip,-extension domain and domains which satisfies the
Hardy-Littlewood property of order a are properly contained in the class
of domains which satisfies the Hardy-Littlewood property with the inner
length metric of order a.

3. The Hdélder continuity of conjugate harmonic functions
in domains

Let

|0f(z)| = lim sup [f(z+h) - f(2)]
|h|—0 |h|

LEMMA 3.1. {3, Theorem 1.1] If f is harmonic and in Lip, (D), then
4 . a—
(3.1) 05(2)) < 2/Iflladist(z, 6D)°~*
in D.

In [3] combining Lemma 3.1 and the fact that an uniform domain has
the Hardy-Littlewood property yields the following extension of a result
due to Privaloff on the continuity of conjugate harmonic functions in the
unit disk.

, for z € D.
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LEMMA 3.2. [3, Corollary 2.2] If D is b-uniform and if f is analytic
with Re(f) in Lip, (D), then f is in Lipo (D) with

(3.2) £l < ZlIRe(D)lla,

where c is a constant which depends only on the constant b.

Now we extend the above result to the class of domains which has
the Hardy-Littlewood property of order «.

THEOREM 3.3. If a domain D in C satisfies the Hardy-Littlewood
property of order « and if f is analytic with Re(f) in Lip,(D), then f
is in Lip, (D) with (3.2) where ¢ = ¢(D).

PRrOOF. Let u = Re(f). Then u is harmonic in D,

1] = I35 — i ()] < 20u()] < 2 ullodist(z, 9D)"*

by the Cauchy-Riemann equations and Lemma 3.1. Then since D sat-
isfies the Hardy-Littlewood property of order «, we obtain that f is in
Lipo (D) with (3.2) where ¢ = ¢;(D)32. g

By Theorem 1.4 and Theorem 3.3 gives the following.

COROLLARY 3.4. Ifa domain D in C is a Lip,-extension domain and
if f is analytic with Re(f) in Lip, (D), then f is in Lip, (D) with (3.2)
where c is the same constant as the above Theorem 3.3.

But the above result does not hold for a John disk.

THEOREM 3.5. There exists an analytic function f on a John disk
such that Re(f) is in Lip, (D), but f is not in Lip,(D)

PRrROOF. Let D =B\ (—1,0] and define a function f on D by f(z) =
Logz which is an analytic branch of logz. Then clearly D is a John Disk.
Also f(z) = log|z| + iArg(z) and Re(f) = log|z| is differentiable on D,
thus Re(f) is in Lip,(D) for 0 < a < 1. But Arg(z) is not in Lip, (D).

For let
1

) 1 .
2y = Zezwn/(n-é-l),wn — Ze zTrn/(n—}—l),
where n =1,2,.... Then

lim |Arg(z,) — Arg(w,)| = 2,
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while
lim |z, —w,|* =0.
Thus Arg(z) is not in Lip, (D), therefore f is not in Lip, (D). O

To obtain an analogous result of Lemma 3.2 for a John disk, we need
a following analogous result of Lemma 3.1 for f € Lip’ (D). The proof
is similar to the proof of Lemma 3.1 [3, Theorem 1.1].

THEOREM 3.6. If f is harmonic and in Lipl (D), then for z € D

(33) 05(2)| < 2l dist(z, 0D)*~"

PRrROOF. For z € C and 0 < r < oo let B(z,7) denote the open
disk with center 2 and radius . If z € D and r < dist(z,0D), then
B(z,7) C D and with the Poisson integral formula we obtain

2w 2 2 )
fe+m) =10 =5 [ (s = D7+ 1e?) = f)as
|h| /2" rcos(f — ¢) — |h|

rei® — h|?

(f(z+re?) ~ f(2))df
for |h| < r where h = |hle!®. Thus by (1.4),

[f(z+h) = F(2)| 1/2” ricos(8 — ¢)| + |R|
0 (r—1[h))?

Al T
Then since Ap(z + re', z) = r, we have

mAp(z + re®, z)*d6.

0F(2)] < Lmret.
T

Letting r — dist(z,0D) and m — ||f||% then yields (3.3). O
THEOREM 3.7. If a domain D in C has the Hardy-Littlewood prop-

erty with the inner length metric of order o and if f is analytic with
Re(f) € Lip! (D), then f is in Lipl (D) with

(3.4) 1111L < 2P ey
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PRrROOF. Let u = Re(f). Then u is harmonic in D,
1F(@)] = 192(2) 1 2%(2)] < 200u(2)| < 2 jul Ldist(z, OD)*
s

by the Cauchy-Riemann equations and Theorem 3.6. Then since D
satisfies the Hardy-Littlewood property with the inner length metric of
order a, we obtain that f is in Lip! (D) with (3.4). O

Now Theorem 1.5 and Theorem 3.7 give an analogous result of Lemma
3.2 for a John disk.

COROLLARY 3.8. If a domain D in C is a b-John domain and if f is
analytic with Re(f) in LipL (D), then f is in Lip’ (D) with (3.4) replaced
¢(D) by c(b).
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