HARDY-LITTLEWOOD PROPERTY WITH THE INNER LENGTH METRIC

KIWON KIM

ABSTRACT. A result of Hardy and Littlewood relates Hölder continuity of analytic functions in the unit disk with a bound on the derivative. Gehring and Martio extended this result to the class of uniform domains. We call it the Hardy-Littlewood property. Langmeyer further extended their result to the class of John disks in terms of the inner length metric. We call it the Hardy-Littlewood property with the inner length metric. In this paper we give several properties of a domain which satisfies the Hardy-Littlewood property with the inner length metric. Also we show some results on the Hölder continuity of conjugate harmonic functions in various domains.

1. Introduction

Suppose that D is a domain in the complex plane \mathbb{C} . Let $\mathbb{B}(z,r) = \{w : |w-z| < r\}$ for $z \in \mathbb{C}$ and r > 0 and let $\mathbb{B} = \mathbb{B}(0,1)$ be the unit disk in \mathbb{C} . Let $\ell(\gamma)$ denote the euclidean length of a curve γ , dia (γ) be a diameter of γ and dist(A,B) denote the euclidian distance from A to B for two sets $A, B \subset \overline{\mathbb{C}}$. Let $\alpha \in (0,1]$.

Suppose that f is a real or complex valued function defined in D. We say that f is in the *Lipschitz class*, $Lip_{\alpha}(D)$, $0 < \alpha \le 1$, if there exists a constant m such that

$$(1.1) |f(z_1) - f(z_2)| \le m|z_1 - z_2|^{\alpha}$$

for all z_1 and z_2 in D, and we let $||f||_{\alpha}$ denote the infimum of the numbers m for which (1.1) holds. f is said to belong to the local Lipschitz class,

Received September 16, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 30C65, 30F45.

Key words and phrases: Hardy-Littlewood property with the inner length metric, John disk, Lipschitz class.

This work was supported by NON-DIRECTED RESEARCH FUND, Silla University, 2001.

 $locLip_{\alpha}(D)$, if there is a constant m such that (1.1) holds whenever z_1, z_2 lie in any open disk which is contained in D. Let $||f||_{\alpha}^{loc}$ denote the infimum of the numbers m such that (1.1) holds in this situation.

DEFINITION 1.1. A domain D is called a Lip_{α} -extension domain if there exists a constant a depending on D and α such that $f \in locLip_{\alpha}(D)$ implies $f \in Lip_{\alpha}(D)$ with

$$||f||_{\alpha} \leq a||f||_{\alpha}^{loc}$$
.

Suppose that f is analytic in D. If f is in $Lip_{\alpha}(D)$, then it is not difficult to show that

$$|f'(z)| \leq mdist(z, \partial D)^{\alpha - 1}$$

in D. Conversely, we have the following well known result of Hardy and Littlewood.

THEOREM 1.2. [5] If D is an open disk and f is analytic in D with

$$|f'(z)| \le m \operatorname{dist}(z, \partial D)^{\alpha - 1}$$

for all z in D and for every $\alpha \in (0,1]$, then $f \in Lip_{\alpha}(D)$ with

$$||f||_{\alpha} \leq \frac{cm}{\alpha},$$

where c is an absolute constant.

The above theorem leads to the following notion, introduced in [3].

DEFINITION 1.3. A proper subdomain D in \mathbb{C} is said to have the Hardy-Littlewood property if there exists a constant c = c(D) such that whenever f is analytic in D and f satisfies the condition

$$(1.2) |f'(z)| \le m \operatorname{dist}(z, \partial D)^{\alpha - 1}$$

in D for every $\alpha \in (0,1]$, then $f \in Lip_{\alpha}(D)$ with

$$||f||_{\alpha} \leq \frac{cm}{\alpha}.$$

Theorem 1.2 tells that each open disk has the Hardy-Littlewood property. In [3, Corollary 2.2] it is proved moreover that uniform domains,

defined below, have the Hardy-Littlewood property and it is showed that there exist domains having the Hardy-Littlewood property without being uniform [9].

A domain D in \mathbb{C} is said to be *b-uniform* if there exists a constant $b \geq 1$ such that each pair of points z_1 and z_2 in D can be joined by a rectifiable arc γ in D with

$$\ell(\gamma) \le b|z_1 - z_2|$$

and with

(1.3)
$$\min(\ell(\gamma_1), \ell(\gamma_2)) \le b \operatorname{dist}(z, \partial D)$$

for each $z \in \gamma$, where γ_1 and γ_2 are the components of $\gamma \setminus \{z\}$.

Next we say that a proper subdomain D in $\mathbb C$ has the Hardy-Littlewood property of order α for some $\alpha \in (0,1]$, if there exists a constant $k=k(D,\alpha)$ such that if f is analytic in D with (1.2) for all $z \in D$, then $f \in Lip_{\alpha}(D)$ with $||f||_{\alpha} \leq km$.

It is clear that if D has the Hardy-Littlewood property, then D has the Hardy-Littlewood property of order α for each $\alpha \in (0,1]$. But the opposite implication does not hold in general [1].

Next in [1] they give a characterization of a domain which has the Hardy-Littlewood property with order α as follows.

THEOREM 1.4. [1] A simply connected domain D in \mathbb{C} has the Hardy-Littlewood property with order $\alpha \in (0,1]$ if and only if D is a Lip_{α} -extension domain.

On the other hands, in [8] it is showed that the Hardy-Littlewood property does not hold for John disks, defined below.

A simply connected bounded domain $D \subset \mathbb{C}$ is said to be a *b-John* disk if there exist a point $z_0 \in D$ and a constant $b \geq 1$ such that each point $z_1 \in D$ can be joined to z_0 by an arc γ in D satisfying

$$\ell(\gamma(z_1, z)) \leq b \operatorname{dist}(z, \partial D)$$

for each $z \in \gamma$, where $\gamma(z_1, z)$ is the subarc of γ with endpoints z_1, z . We call z_0 a John center, b a John constant and γ a b-John arc. A domain D in $\mathbb C$ is a b-John disk if and only if there is a constant $b \ge 1$ such that each pair of points $z_1, z_2 \in D$ can be joined by an arc γ in D which satisfies (1.3) [10]. Thus the class of simply connected bounded uniform domains is properly contained in the class of John disks. The converse is not true, for example, $\mathbb{B} \setminus [0, 1)$.

But John disks hold analogues of the Hardy-Littlewood property [6], [8] and an analogue in [8] is explained in terms of the inner length metric.

THEOREM 1.5. [8] If D is a b-John disk and f is analytic in D and f satisfies the condition (1.2) in D for some $\alpha \in (0, 1]$, then

$$|f(z_1)-f(z_2)| \leq \frac{cm}{\alpha} \lambda_D(z_1, z_2)^{\alpha},$$

for all z_1 and z_2 in D, where c is a constant which depends only on b,

$$\lambda_D(z_1, z_2) = \inf \ell(\beta).$$

Here infimum is taken over all open arcs β in D which join z_1 and z_2 .

Suppose that f is a real or complex valued function defined in D. We say that f is in the Lipschitz class with the inner length metric, $Lip_{\alpha}^{I}(D)$, $0 < \alpha \le 1$, if there exists a constant m_1 such that

$$|f(z_1) - f(z_2)| \le m_1 \lambda_D(z_1, z_2)^{\alpha}$$

for all z_1 and z_2 in D, and we let $||f||_{\alpha}^I$ denote the infimum of the numbers m for which (1.4) holds.

By definition it is clear that if $f \in Lip_{\alpha}(D)$, then $f \in Lip_{\alpha}^{I}(D)$.

DEFINITION 1.6. A proper subdomain D in $\mathbb C$ is said to have the Hardy-Littlewood property with the inner length metric of order α , if there exists a constant $k = k(D, \alpha)$ such that whenever f is analytic in D and f satisfies the condition (1.2) in D for some $\alpha \in (0, 1]$, then f is in $Lip_{\alpha}^{I}(D)$ with

$$||f||_{\alpha}^{I} \leq km.$$

Clearly a proper subdomain D in \mathbb{C} with the Hardy-Littlewood property of order α has the Hardy-Littlewood property with the inner length metric of order α . Also by Theorem 1.5 a John disk has the Hardy-Littlewood property with the inner length metric of order α .

One of the main subjects of this paper is to find properties of domains which have the Hardy-Littlewood property with the inner length metric of order α (see Section 2).

Also in Section 3 we show some results on the Hölder continuity of conjugate harmonic functions in domains introduced above.

2. The Hardy-Littlewood property with the inner length metric of order α

First of all we show that the converse of Theorem 1.5 is not true.

THEOREM 2.1. There exists a domain D in \mathbb{C} having the Hardy-Littlewood property with the inner length metric of order α which is not a John disk.

PROOF. Let $G_j = \mathbb{B}(z_j, \frac{2^{-j}}{\sqrt{3}})$ where $z_j = |z_j|e^{i\theta_j}$ and

$$|z_j| = 1 - \frac{4^{-j}}{2} + \frac{2^{-j}}{\sqrt{3}}, \quad \theta_j = \frac{3\pi}{2}(1 - 2^{-j}), \quad j = 0, 1, 2, \dots$$

Next let $D = \mathbb{B} \cup \bigcup_{j=0}^{\infty} G_j$. To show that D is not a John disk, let α_j , $j = 0, 1, 2, \ldots$, be a straight crosscut of D joining two points at which \mathbb{B} and G_j meet. Let A_j and B_j denote two subdomains of D divided by α_j with $0 \in A_j$ and $z_j \in B_j$. Then

$$\min(\operatorname{dia}(A_j),\operatorname{dia}(B_j))=\operatorname{dia}(B_j)=2a$$

and

$$dia(\alpha_j) = \frac{4(b(a-b)(1-b)(1+a-b))^{\frac{1}{2}}}{1-2b+a},$$

where $a = \frac{2^{-j}}{\sqrt{3}}$ and $b = 4^{-j-1}$. By elementary calculation, we have

$$\frac{\mathrm{dia}(B_j)}{\mathrm{dia}(\alpha_j)} = k2^j$$

for some absolute constant k and hence there is no constant c such that

$$dia(B_j) \le c dia(\alpha_j)$$

for all $j=0,1,2,\ldots$. Thus by [2, Theorem 2.1], D is not a John disk. But by [9, Corollary 7.11] D satisfies the Hardy-Littlewood property of order α and thus it has the Hardy-Littlewood property with the inner length metric of order α .

Now let us recall the distance functions k_{α} and δ_{α} on a domain D, introduced in [7]. For each $\alpha \in (0,1]$ and for z_1, z_2 in D we define

$$k_{lpha}(z_1,z_2) = \inf_{\gamma} \int_{\gamma} \operatorname{dist}(x,\partial D)^{lpha-1} ds,$$

where the infimum is taken over all rectifiable arcs γ joining z_1 to z_2 in D. Furthermore,

$$\delta_{\alpha}(z_1, z_2) = \sup_{f} |f(z_1) - f(z_2)|,$$

where the supremum is taken over all analytic functions f on D satisfying

$$|f'(z)| \leq \operatorname{dist}(z, \partial D)^{\alpha - 1}$$

for all $z \in D$.

The next theorem characterizes a domain which satisfies the Hardy-Littlewood property with the inner length metric of order α .

THEOREM 2.2. A domain D in \mathbb{C} has the Hardy-Littlewood property with the inner length metric of order α if and only if there is a constant $M < \infty$ such that for all $z_1, z_2 \in D$ there exists a rectifiable curve γ joining z_1 to z_2 in D with

(2.1)
$$\int_{\gamma} \operatorname{dist}(x, \partial D)^{\alpha - 1} ds \le M \lambda_D(z_1, z_2)^{\alpha}.$$

To prove Theorem 2.2 we need the following Lemma 2.3 which shows that δ_{α} is connected to the metric k_{α} .

Lemma 2.3. [7] In a simply connected bounded domain $D \subset \mathbb{C}$ we have

$$(2.2) \delta_{\alpha} \le k_{\alpha} \le c_1 \delta_{\alpha},$$

where $\alpha \in (0,1]$ and c_1 is an absolute constant.

PROOF OF THEOREM 2.2. Assume that D has the Hardy-Littlewood property with the inner length metric of order α . By the definition of δ_{α} , the second inequality of (2.2) and

$$|f(z_1) - f(z_2)| \le \frac{c(D)}{\alpha} \lambda_D(z_1, z_2)^{\alpha}$$

for f analytic in D and $|f'(z)| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}$ in D, we obtain

$$k_{\alpha}(z_1, z_2) \le c_1 \delta_{\alpha}(z_1, z_2) = c_1 \sup_{f} |f(z_1) - f(z_2)| \le \frac{c_1 c(D)}{\alpha} \lambda_D(z_1, z_2)^{\alpha}.$$

Hence there exists a rectifiable curve γ joining z_1 and z_2 in D such that (2.1) is satisfied with $M = \frac{2c_1c(D)}{\alpha}$. Conversely, assume that there exists a constant $M < \infty$ such that for all $z_1, z_2 \in D$ there exists a rectifiable curve γ joining z_1 to z_2 in D with (2.1). Then by the first inequality

of (2.2) for all f analytic in D with $|f'(z)| \leq \operatorname{dist}(z, \partial D)^{\alpha-1}$ in D, we obtain

$$|f(z_1) - f(z_2)| \le \sup_{f} |f(z_1) - f(z_2)|$$

$$\le \inf_{\gamma} \int_{\gamma} \operatorname{dist}(x, \partial D)^{\alpha - 1} ds$$

$$\le M \lambda_D(z_1, z_2)^{\alpha}.$$

THEOREM 2.4. If a domain D in \mathbb{C} is a Lip_{α} -extension domain, then it has the Hardy-Littlewood property with the inner length metric of order α .

PROOF. In [4, Theorem 2.2] it is showed that a domain D in \mathbb{C} is a Lip_{α} -extension domain if and only if there is a constant $M < \infty$ such that for all $z_1, z_2 \in D$ there exists a rectifiable curve γ joining z_1 to z_2 in D with (2.1) replaced $\lambda_D(z_1, z_2)^{\alpha}$ by $|z_1 - z_2|^{\alpha}$. Therefore we get the conclusion.

REMARK 2.5. By Theorem 2.1, Theorem 2.4 and definition of the Hardy-Littlewood property of order α , we observe that the classes of John domains, Lip_{α} -extension domain and domains which satisfies the Hardy-Littlewood property of order α are properly contained in the class of domains which satisfies the Hardy-Littlewood property with the inner length metric of order α .

3. The Hölder continuity of conjugate harmonic functions in domains

Let

$$|\partial f(z)| = \lim \sup_{|h| \to 0} \frac{|f(z+h) - f(z)|}{|h|}, \text{ for } z \in D.$$

LEMMA 3.1. [3, Theorem 1.1] If f is harmonic and in $Lip_{\alpha}(D)$, then

(3.1)
$$|\partial f(z)| \le \frac{4}{\pi} ||f||_{\alpha} \operatorname{dist}(z, \partial D)^{\alpha - 1}$$

in D.

In [3] combining Lemma 3.1 and the fact that an uniform domain has the Hardy-Littlewood property yields the following extension of a result due to Privaloff on the continuity of conjugate harmonic functions in the unit disk.

LEMMA 3.2. [3, Corollary 2.2] If D is b-uniform and if f is analytic with Re(f) in $Lip_{\alpha}(D)$, then f is in $Lip_{\alpha}(D)$ with

$$(3.2) ||f||_{\alpha} \le \frac{c}{\alpha} ||Re(f)||_{\alpha},$$

where c is a constant which depends only on the constant b.

Now we extend the above result to the class of domains which has the Hardy-Littlewood property of order α .

THEOREM 3.3. If a domain D in \mathbb{C} satisfies the Hardy-Littlewood property of order α and if f is analytic with Re(f) in $Lip_{\alpha}(D)$, then f is in $Lip_{\alpha}(D)$ with (3.2) where c = c(D).

PROOF. Let u = Re(f). Then u is harmonic in D,

$$|f'(z)| = \left|\frac{\partial u}{\partial x}(z) - i\frac{\partial u}{\partial y}(z)\right| \le 2|\partial u(z)| \le \frac{8}{\pi}||u||_{\alpha} \operatorname{dist}(z, \, \partial D)^{\alpha - 1}$$

by the Cauchy-Riemann equations and Lemma 3.1. Then since D satisfies the Hardy-Littlewood property of order α , we obtain that f is in $Lip_{\alpha}(D)$ with (3.2) where $c = c_1(D)\frac{8}{\pi}$.

By Theorem 1.4 and Theorem 3.3 gives the following.

COROLLARY 3.4. If a domain D in \mathbb{C} is a Lip_{α} -extension domain and if f is analytic with Re(f) in $Lip_{\alpha}(D)$, then f is in $Lip_{\alpha}(D)$ with (3.2) where c is the same constant as the above Theorem 3.3.

But the above result does not hold for a John disk.

THEOREM 3.5. There exists an analytic function f on a John disk such that Re(f) is in $Lip_{\alpha}(D)$, but f is not in $Lip_{\alpha}(D)$

PROOF. Let $D = \mathbb{B} \setminus (-1,0]$ and define a function f on D by f(z) = Logz which is an analytic branch of logz. Then clearly D is a John Disk. Also f(z) = log|z| + iArg(z) and Re(f) = log|z| is differentiable on D, thus Re(f) is in $Lip_{\alpha}(D)$ for $0 < \alpha \le 1$. But Arg(z) is not in $Lip_{\alpha}(D)$. For let

$$z_n = \frac{1}{4}e^{i\pi n/(n+1)}, w_n = \frac{1}{4}e^{-i\pi n/(n+1)},$$

where $n = 1, 2, \ldots$ Then

$$\lim_{n \to \infty} |Arg(z_n) - Arg(w_n)| = 2\pi,$$

while

$$\lim_{n\to\infty} |z_n - w_n|^{\alpha} = 0.$$

Thus Arg(z) is not in $Lip_{\alpha}(D)$, therefore f is not in $Lip_{\alpha}(D)$.

To obtain an analogous result of Lemma 3.2 for a John disk, we need a following analogous result of Lemma 3.1 for $f \in Lip_{\alpha}^{I}(D)$. The proof is similar to the proof of Lemma 3.1 [3, Theorem 1.1].

THEOREM 3.6. If f is harmonic and in $Lip_{\alpha}^{I}(D)$, then for $z \in D$

$$|\partial f(z)| \le \frac{4}{\pi} ||f||_{\alpha}^{I} \mathrm{dist}(z, \partial D)^{\alpha - 1}.$$

PROOF. For $z \in \mathbb{C}$ and $0 < r < \infty$ let B(z,r) denote the open disk with center z and radius r. If $z \in D$ and $r < \operatorname{dist}(z, \partial D)$, then $\overline{\mathbb{B}}(z,r) \subset D$ and with the Poisson integral formula we obtain

$$\begin{split} f(z+h) - f(z) &= \frac{1}{2\pi} \int_0^{2\pi} \big(\frac{r^2 - |h|^2}{|re^{i\theta} - h|^2} - 1 \big) (f(z + re^{i\theta}) - f(z)) d\theta \\ &= \frac{|h|}{\pi} \int_0^{2\pi} \frac{r\cos(\theta - \phi) - |h|}{|re^{i\theta} - h|^2} (f(z + re^{i\theta}) - f(z)) d\theta \end{split}$$

for |h| < r where $h = |h|e^{i\phi}$. Thus by (1.4),

$$\frac{|f(z+h)-f(z)|}{|h|} \leq \frac{1}{\pi} \int_0^{2\pi} \frac{r|cos(\theta-\phi)|+|h|}{(r-|h|)^2} m\lambda_D(z+re^{i\theta},z)^{\alpha} d\theta.$$

Then since $\lambda_D(z + re^{i\theta}, z) = r$, we have

$$|\partial f(z)| \le \frac{4}{\pi} m r^{\alpha - 1}.$$

Letting $r \to \operatorname{dist}(z, \partial D)$ and $m \to ||f||_{\alpha}^{I}$ then yields (3.3).

THEOREM 3.7. If a domain D in $\mathbb C$ has the Hardy-Littlewood property with the inner length metric of order α and if f is analytic with $Re(f) \in Lip_{\alpha}^{I}(D)$, then f is in $Lip_{\alpha}^{I}(D)$ with

(3.4)
$$||f||_{\alpha}^{I} \leq \frac{8}{\pi} \frac{c(D)}{\alpha} ||Re(f)||_{\alpha}^{I}.$$

PROOF. Let u = Re(f). Then u is harmonic in D,

$$|f'(z)| = \left|\frac{\partial u}{\partial x}(z) - i\frac{\partial u}{\partial y}(z)\right| \le 2|\partial u(z)| \le \frac{8}{\pi}||u||_{\alpha}^{I} \operatorname{dist}(z, \, \partial D)^{\alpha - 1}$$

by the Cauchy-Riemann equations and Theorem 3.6. Then since D satisfies the Hardy-Littlewood property with the inner length metric of order α , we obtain that f is in $Lip_{\alpha}^{I}(D)$ with (3.4).

Now Theorem 1.5 and Theorem 3.7 give an analogous result of Lemma 3.2 for a John disk.

COROLLARY 3.8. If a domain D in \mathbb{C} is a b-John domain and if f is analytic with Re(f) in $Lip_{\alpha}^{I}(D)$, then f is in $Lip_{\alpha}^{I}(D)$ with (3.4) replaced c(D) by c(b).

References

- K. Astala, K. Hag, P. Hag and V. Lappalainen, Lipschitz Classes and the Hardy-Littlewood Property, Monatsh. Math. 115 (1993), 267-279.
- [2] F. W. Gehring, K. Hag and O. Martio, Quasihyperbolic geodesics in John domains, Math. Scand. 65 (1989), 75-92.
- [3] F. W. Gehring and O. Martio, Quasidisks and the Hardy-Littlewood property, Complex Variables Theory Appl. 2 (1983), 67–78.
- [4] _____, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Math. 10 (1985), 203-219.
- [5] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439.
- [6] K. Kim and N. Langmeyer, Harmonic measure and hyperbolic distance in John disks, Math. Scand. 83 (1998), 283-299.
- [7] R. Kaufman and J.-M. Wu, Distances and the Hardy-Littlewood property, Complex Variables Theory Appl. 4 (1984), 1-5.
- [8] N. Langmeyer, The quasihyperbolic metric, growth and John domains, Ann. Acad. Sci. Fenn. Math. 23 (1998), 205-224.
- [9] V. Lappalainen, Lip_{α} -extension domains, Ann. Acad. Sci. Fenn. Math. Diss. **56** (1985).
- [10] R. Näkki and J. Väisälä, John disks, Exposition. Math. 9 (1991), 3-43.

Department of Mathematics Silla University Busan 617-736, Korea E-mail: kwkim@silla.ac.kr