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FUZZY CLOSURE SYSTEMS AND
FUZZY CLOSURE OPERATORS

YonNGg CHAN KiM AND JUunG M1 Ko

ABSTRACT. We introduce fuzzy closure systems and fuzzy closure
operators as extensions of closure systems and closure operators.
We study relationships between fuzzy closure systems and fuzzy
closure spaces. In particular, two families F(S) and F(C) of fuzzy
closure systems and fuzzy closure operators on X are complete
lattice isomorphic.

1. Introduction and preliminaries

Closure systems and closure operators play an important role in topo-
logical spaces, lattices [2, 3, 8, 9, 11|, Boolean algebras [1, 2, 8, 11],
convex sets [1, 2, 8], deductive systems (3, 4, 6]. Recently, Gerla et al.
[1, 6, 7] studied fuzzy closure operators and fuzzy closure systems as
extensions of closure systems and closure operators. They have been
developed in many view points (fuzzy logic [1, 3, 4, 6, 7, 9, 11], fuzzy
subalgebra [3, 6, 7], fuzzy congruences [6, 7], fuzzy topologies [10, 12]).

In this paper, we will study relationships between (fuzzy) closure
systems and (fuzzy) closure spaces in a sense Gerla et al. [1]. We define
subspaces and products of two families of fuzzy closure systems and
fuzzy closure spaces. In particular, two families F(S) and F(C) of fuzzy
closure systems and fuzzy closure operators on X are complete lattice
isomorphic.
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2. Preliminaries
In this paper, let X be a nonempty set, I = [0, 1], 2%
subsets of X and IX a family of all fuzzy sets of X.

If A C X, we define the characteristic function x4 on X by

a family of all

l,ifze A,

xa(@) = { 0, ifz & A.

A closure operator ([2]) is a map cl : 2% — 2% if it satisfies:
(cll) A C cl(A), for each A € 2%,

(c12) A C B = cl(A) C cl(B), for each A, B € 2%,

(c13) cl(cl(A)) = cl(A), for each A € 2X.

DEFINITION 2.1 ([1]). A function C : I* — X is called a fuzzy clo-
sure operator on X if it satisfies the following conditions:

(C1) C(A\) > ), for all X € IX,

(C2) C(A1) < C(Ag), if Ay < Ao

(C3) C(C(N)) = C(A) for all X € TX.
The pair (X, C) is called a fuzzy closure space.

Let C1 and Cs be fuzzy closure operators on X. We say that C; is
finer than Cy (Cy is coarser than C1), denoted by Co < C4, if and only
if C1(\) < Co(N), for all X € IX.

A subset & of 2¥ is called a closure system [2] if it satisfies:

(s1) X € &,

(s2) if A; € GforallieTl, then ;. 4; € 6.

DEFINITION 2.2 ([1, 2]). A subset S of IX is called a fuzzy closure
system on X if it satisfies:

(S1)1e s,

(82) if \; e Sfor all i €T, then A, . A € S.
The pair (X,S) is called a fuzzy closure system.

Let S; and Sq be fuzzy closure systems on X. We say that S, is finer
than Sy (Sz is coarser than &) if and only if S; C ;.

THEOREM 2.3 ([1]). Let (X,S) be a fuzzy closure system. For each
A € I, we define an operator Cs : I — IX as follows:

CsN=A\{pelp=X pes)

Then (X,Cs) is a fuzzy closure space.



Fuzzy closure systems and fuzzy closure operators 37

THEOREM 2.4 ([1]). (1) Let C be a fuzzy operator on X satisfying
(C1) and (C2). Define

Sc(N) ={eI*|C(\) =}

Then S¢ is a fuzzy closure system on X such that C = Cs,.
(2) If (X, S) is a fuzzy closure system, then Scy = S.

REMARK 2.5. (1) A closure system is often called a Moore family
(ref. [2, 9)).

(2) A fuzzy closure space (X,C) is called topological if C(0) = 0 and
C(AV p) = C(\) Vv C(p), for all A, u € I*(ref. [10)).

(3) Let (X,7T) be a fuzzy topological space (ref. [5]). Then S =
{AeI¥X|1-Xe€T}is a fuzzy closure system and Cr(\) = A{u €
IX | > )\ 1- )€ T} is a topological fuzzy closure operator on X
(ref. [10]).

(4) Let (X, ) be a closure system. For each A € 2%, we define an
operator clg : 2X — 2% by cls(4) = {B € 2X | AC B, B e G}.
Then (X, clg) is a closure space.

(5) Let ¢l be an operator on X satisfying (cll) and (cl2). Define
Ga = {A € 2% | cl(A) = A}. Then & is a closure system on X such
that ¢l = clg,,. Moreover, if (X, G) is a closure system, then &, = &.

EXAMPLE 2.6. Let X = {z,y,2} be a set. Define C : IX — IX as
follows:

0, if A =0,
X{zwpr 0 # A< Xia}s
Xizpp 0 # A< xgs,
1, otherwise.

C(N) =

Then (X, C) is not a fuzzy closure space. Since C(X{z}) = X{«,y} and
C(X{z,y}) = 1, we have

1=C(Clx{ay) # CX¢a}) = X{zu)-

But (X, C) satisfies (C1) and (C2), by Theorem 2.4, we can obtain
the fuzzy closure system S¢ as follows:

Sc = {67 i7X{z}}
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From Theorem 2.3, the fuzzy closure operator Cs, on X by induced
(X, Sc) is defined by

0, if A\=0,
Csc(A) =< X(zpp HO0# A< xgn
1, otherwise.

It follows that C(x{s}) = X{z,y} but Csc(X(s}) = 1. Hence C # Cs,.

3. Fuzzy closure systems and fuzzy closure operators

For each A € IX and r € I, we denote A\, = {x € X | A(z) > r}. We
obtain fuzzy closure operators and fuzzy closure systems from closure
operators and closure systems.

THEOREM 3.1 ([1]). Let cl : 2% — 2% be a closure operator. Define
a fuzzy operator C,y : IX — IX as follows:

Ca(M) (@) = \/{reI|zed)}

Then it satisfies the following properties:
(1) Cq is a fuzzy closure operator.
(2) C,; is a fuzzy closure operator if and only if ¢l is a closure operator.

THEOREM 3.2 ([1]). Let & be a closure system on X. Define a fuzzy
closure system Ss as follows:

Ss={\eI*|)\€6,Vrel}l

Then it satisfies the following properties:
(1) Se is a fuzzy closure system on X.
(2) Se is a fuzzy closure system if and only if G is a closure system.

THEOREM 3.3 ([1]). (1) Let G be a closure system on X and clg
the closure operator associated with &. Then Csy = Coig -

(2) Let cl be a closure operator on X and & the closure system
associated with cl. Then Ss_, = Sc,.
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EXAMPLE 3.4. Let X = {a,b} be a set. Define cl:2X — 2% as
follows:

() = {a}, cl({a}) = {a}, cl({b}) = X, cl(X) = X.

By Remark 2.5 (5), we obtain &, = {{a}, X}. For each A € I, put
My € I such that
Ap(a) =1, Ap(b) = A(D).

We obtain C : IX — IX as follows:

| Xgap» HM0) =0,
Ca(d) = { X, if A(B) # 0.

Then Sc,, = Se., = {X{a}> b}

Let (X, cly) and (Y, cl3) be closure spaces. A function f: (X,cl;) —
(Y, clo) is a closure map if for each A € 2%, f(cl1(A)) C cl2(f(A)).

DEFINITION 3.5. Let (X, C1) and (Y, C2) be fuzzy closure spaces. A
function f: (X,Cy) — (Y, Cs) is called a fuzzy closure map if for each
AETX, f(C1(N)) < Ca(f(N))-

THEOREM 3.6. Let (X, cly) and (Y, cl2) be closure spaces. A function
f:(X,chh) — (Y,cly) is a closure map if and only if

f : (Xa Ccll) - (Y7 CClz)

is a fuzzy closure map.

PROOF. (=) Let f be a closure map. Suppose there exists A € IX
such that f(Ce, (X)) € Cei, (£(A)). Then there exists y € Y such that

F(Ca, ()W) > Cet, (F(A) ()

Also, there exists z € X with z € f~'({y}) such that

F(Cer, (M) (f () 2 Cot, (N)(2) > Cat, (fF (M) (f (2))-

By the definition of Cyy, (A\), there exists t € I with z € cly(\:) such that

F(Cay M)(f(2)) 2 Ca, (N)(2) 2 t > Ca, (F(A))(f(2))-



40 Yong Chan Kim and Jung Mi Ko

On the other hand, since f is a closure map, f(cl1(A)) C cla(f(Ar)). It
implies
f(z) € flelhi(Me)) C cla(f(Ar)) C cla(F(A)e).

Thus Ce, (f(A)(f(z)) > t. It is contradiction.
(«=) Suppose f is not a closure map. Then there exists A C X such
that f(cl1(A)) ¢ cla(f(A)). Then there exists y € Y such that

y € f(cli(A)), y & cla(f(4)).

Also, there exists z € X with f(z) = y such that
z € cli(A4), y ¢ clz(f(A4))
It implies
z € chi((xa)e),Vt €I, y & cla((xra))s), s € (0,1].
So, Cai, (xa)(@) =1, Cey(xs(4))(f(2)) = 0. Thus,

1= f(Ca,(xa))(f(x)) £ Cap(f(xa))(f(z)) = Car,(Xs(a)) (f(2)) = 0.

Hence f is not a fuzzy closure map. O

Let (X,6;) and (Y, S2) be closure systems. A map f : (X,8;) —
(Y,8,) isa S-map if f71(B) € &, for all B € &,.

DEFINITION 3.7. Let (X,81) and (Y, S2) be fuzzy closure systems.
A function f: (X,81) — (Y, S2) is called a fuzzy S-map if f~1()\) € S
for all A € Ss.

THEOREM 3.8. Let (X, 6;) and (Y, 8;) be fuzzy closure systems. A
function f : (X,6;) — (Y, 82) is a S-map if and only if

[ (X, Se,) = (¥, Se,)

is a fuzzy S-map.

PRrROOF. (=) For each A € Sg,, we have A\, € G, for all ¢t € I. Since f
is a S-map, f71(A\) = f71(\): € &, for all t € I. Hence f~!(\) € Sg, .
(«) For all A € &3, we have (xa); € G2 forallt € I. So, x4 € Ss,-
Since f is a fuzzy S-map, f~'(x4) = Xxs-14) € Se,. Hence, for all
t € (0,1], (Xf~1(A))t=f_1(A)€61. O
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4. Fuzzy closure systems and fuzzy closure operators

THEOREM 4.1. Let (X,S81) and (Y,S2) be fuzzy closure systems.
Then the following statements are equivalent:

(1) A function f : (X,81) — (Y, 83) is a fuzzy S-map.

(2) f:(X,Cs,) — (Y,Cs,) is a fuzzy closure map.

(3) Cs, (f~1(N) < f~HCs,(N), for each X € IV.

PROOF. (1)=(2) Let f be a fuzzy S-map. For all A € IX, we have
the following:

Cs,(fON) = N{peI” |n>FN),ne S}
(Since f=1(p) > f7H(F(N) 2 A, fH(w) € S1))

> AFUTH) 7w 20 7N (w) € 81}

> FALTH) 1 7 ) = A f 7 () € S1))
> f(Cs, (\).

(2)=(3) For all A € IX, we have
F(Cs, (f7HA)) < Cs, (F(f7HA)))  (f is a fuzzy closure map)

< Cs,(A)-
It follows that
Cs,(F71 V) < FHF(Cs, (FTHA))
< f7HCs, (V).
(3)=(1) Let A € Sz. Then Cs,(\) = A. By (3) and Definition 2.1 (C1),
Cs,(f71N) = F~H().
Hence f~1()) € Scs, = Sz from Theorem 2.4. a

The following corollary is similarly proved as in Theorem 4.1.

COROLLARY 4.2. Let (X,C4) and (Y,Cs) be fuzzy closure spaces.
A map f : (X,C1) — (Y,Cy) is a fuzzy closure map if and only if
(X, S8¢,) — (Y,Sc,) is a fuzzy S-map.



42 Yong Chan Kim and Jung Mi Ko

THEOREM 4.3. Let X be a set and {(X;,S;)}ier a family of fuzzy
closure systems. Let f; : X — X; be a function. Define

S={N fi () | i € S:}-

iel

Then:

(1) S is the coarsest fuzzy closure system on X for which each f; is a
fuzzy S-map.

(2) A function f:(Y,8') — (X,S8) is a fuzzy S-map if and only if
fiof:(Y,S8") - (X;,S;) is a fuzzy S-map, for each i € T.

PRrOOF. (1) We easily prove that S is a fuzzy closure system on X.
Let fi : (X,S8") — (X;,S:) be a fuzzy S-map. For p = A i) €S
with u; € &;, then fi_l(,ui) € §*. Since §* is a fuzzy closure system on
X, p € 8% that is, § C §*. Hence S is the coarsest fuzzy closure system
on X for which each f; is a fuzzy S-map.

(2) (=) It is trivial because the composition of fuzzy S-maps is a
fuzzy S-map.

(€) For p = Aycp 71 (1) € S with p; € S, then f71(f;7 (1)) € 8.
It implies £~ (1) = A, F~H(f;  (:)) € S'. Thus, £ is a fuzzy S-map.0]

COROLLARY 4.4. Let F(S) be a family of fuzzy closure systems on
X. In above theorem, each f; =idx : X — X is an identity function.
For each {S;}ier C F(S), We can define

V Si={ A\ wilmes}

iel el

Asi=()s.

iel iel
Then (F(S),V, A, C, {1}, IX) is a complete lattice where {1} is the great-
est lower bound and I¥ is the least upper bound in F(S).

Using Theorem 4.3, we can define subspaces and products in the
obvious way.

DEFINITION 4.5. Let (X, S) be a fuzzy closure system and A a subset
of X. The pair (A4,84) is said to be a subspace of (X,8) if S4 is the
coarsest fuzzy closure system on X which the inclusion function i : A —
X is a fuzzy S-map.
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DEFINITION 4.6. Let {(X;,S;) | i« € '} be a family of fuzzy clo-
sure systems. Let X = J],.r X; be a product set. The coarsest fuzzy
closure system & = ®S; on X with respect to (X, 7;, (X;,S;)) where
m; : X — X, is projection map is called the product fuzzy closure system

Using Theorem 4.3, we have the following corollary.

COROLLARY 4.7. Let {(X;,S;)}ier be a family of fuzzy closure sys-
tems, X = [[;cp X:i a product set and, for eachi € ', m;: X — X; a
projection. The structure S = ®S; on X is defined by

S={ N\ (p) | pi €S}

el

Then:

(1) S is the coarsest fuzzy closure system on X which for eachi €T,
m; is a fuzzy S-map.

(2) A function f:(Y,8') — (X,S) is a fuzzy S-map if and only if
mio f:(Y,8) — (X;,S;) is a fuzzy S-map, for each i € T".

THEOREM 4.8. Let X be a set and {(X;, C;)}ier a family of fuzzy
closure spaces. Let f; : X — X; be a function for each i € T'. For each
X € I, we define the function C : I* — IX by

c\) = N\ fFHC(H ).

i€l

Then we have the following statements:

(1) C is the coarsest fuzzy closure operator on X for which each f; is
a fuzzy closure map.

(2) A function f : (Y,C") — (X, C) is a fuzzy closure map if and only
ifmof:(Y,C") — (X;,C;) is a fuzzy closure map, for eachi € I'.

(3) Sc =S where S = {A\;er FM i) | e € Sci}-

PRrROOF. (1) We will show that C is the fuzzy closure operator on X.

(C1) Since C(N) = Aser £7HCHHEN) = Aier £72(F ) 2 A, we
have A < C ().

(C2) It is trivial.
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(C3) For each A ¢ IX, C(C(A\)) = C(X) from (C2) and

C(N) = N\ f7HC(H:(CN)))

iel

= N ETNCUN 7 @0

el i€l

AW Ce(fi(M))

el

< N\ £ CHG M)
i€l

= /\fi_l(c (A
i€r

= C(\).

Let f; : (X,C*) — (X;,C;) be a fuzzy closure map for each ¢ € I'. For
each X € IX,

fi(C*(N) < Gi(f«(N)), VieT
= C*(/\) <f 1(fz(C*(/\))) < f HCi(fiN)), VieT

= C*(N) < A\ f7HGiD)
i€l
= C*(\) < C(N).

Hence C' is the coarsest fuzzy closure operator on X for which each f;
is a fuzzy closure map.

(2) (=) It is trivial because the composition of fuzzy closure maps is
a fuzzy closure map.

(<) Let fiof:(Y,C') - (X;,C;) be a fuzzy closure map for each
ieT. Foreach A € IV,

fio f(C'\) € Ci(fio f(N), Ve €T
= f(C'N) < £ (fulf ( "N < FHCHf(FN))), VieT
= FCO) < A 7N f)»

= f(C"(N) < C(F(A).

Hence f: (Y,C") — (X, C) is a fuzzy closure map.
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(3) Let A € Sc. Then C(A) = X, ie. A= A,p 7 H(Ci(fi(N))). Since
CZ(Cz(fz()\))) = Cl(fl()\)), then C,(fl()\)) S Sci‘ Thus A € S.
Let 1 € S. Then there exists p; € S¢, with Ci(p;) = p; such that
# = Nier [ (p:). Tt implies
Cw =N\
i€l
= N\ F7HGEN £ 0)))
i€l iel
< N\ FTHGT 0)))
iel
<Af
i€l
= A5
i€l
= lj"
Then C(p) = p, ie. p € Se. O

THEOREM 4.9. Let {(X;,S:)}icr be a family of fuzzy closure systems.
Let f,: X — X, be a function and S a fuzzy closure system on X as

follows:
S= {/\ f Nz I Wi € S; }
i€l
Then, for each X € IX,
= N\ £7(Cs, (f:(V)).
el

Proor. Let Cs,(fi(N) = A{p:s | pi = fi(A), p: € S} Since
FMps) = £ (f:(N) > A and for each p; € S,

AN A AT ) €S,
jer—{i}
we have

FTHCs (i) = N o) L pi = £i(N), pi € Si}
2/\{fz~ (ps) | £72(01) = A, f7Hps) € S).
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It implies
N £7H(Cs,(£:(N))
i€l
> AN o) L 7)) 2 X, 7 e:) € 8}
el
> Cs(A).

Suppose there exists A € IX such that

N 2 N\ 571 Cs, (£:(0))).

i€l

Then there exists g € X such that

< N\ £ HCs,(£:(0))(=o)-

el

From the definition of Cs()), there exists 4 € IX with u > Aand p € S
such that

Cs(N)(o) < p(zo) < \ £7(Cs, (fi(M)) (o).

el

On the other hand, since pu € S, there exists v; € I Xi guch that

v; € S; and /\fi_l(v) =

i€l
Since A;cr fi '(v:) = A, we have

/\f (vi)) < v

el

Then Cs, (fi(A)) < v;.

N F71Cs () < N\ £

1€l i€l

It is a contradiction. Hence Cs(A) > A,cr fi ' (Cs, (f:(V))- O
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THEOREM 4.10. Let F(C) be a family of fuzzy closure operators on
X. For each {C; |i €T} c F(C), we define:

W;erCi(A) = /\ Ci(A)

i€l
MierCi = Chsg,

where Cns,, = (el uw>A p€NierSe,}-

Then (F(C),Y,m, <, Cy,C1) is a complete lattice where Cy is the
greatest lower bound and C) is the least upper bound in F(C) defined
as follows:

Co(N) =1, C:(0) =\, WaeTl*.

ProOF. In Theorem 4.8, let {C;}icr be a family of fuzzy closure oper-
ators on X and f; = idx : X — X identity function. Then W;crC;(A) =
Nier Ci() is the least upper bound of {C;}cr.

Since NSc;, is a fuzzy closure system, Cns,, is a fuzzy closure oper-
ator. Since N;erSe;, C Sc;, tdx : (X,S8¢,) — (X, NierSc;) is a fuzzy
S-map. By Theorem 4.1, idx : (X,Cs;,) — (X,Cn,crsc,) is a fuzzy
closure map. Hence

Cﬂiersci < Csci =Ci.

If C is a fuzzy closure operator such that C <« C; for all i € T", then
C(A) > Cj(A) forall¢ € T. By Theorem 4.1, S¢ C Sc¢,. Since C(C(N)) =
C(A), then C(X\) € S¢ C Sg;, for each ¢ € . Thus C(A) € NierSe,. It
implies

Cﬁiersci (>‘) < C()‘)

Hence C' < Cn,crsg, - So, MierCi = Cns,, is the greatest lower bound
Of {Cz}zep D

EXAMPLE 4.11. Let X = {a,b,c} be a set. Define C; : I* — IX as
follows:

Cr(N) = X{a}, H0 <A< X{a}s
' 1, otherwise,

Xy, 0 <A< X,

1, otherwise.

Cz(/\) = {
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We define (C; V C3)(A\) = C1(A) V C2(\). Then
X{a,b}> 1f6 <A< X{a}s
(C1VEC)A) = X{ab}> if0 <A< X{b}>
1, otherwise.
Since
1=(C1VC)(C1V Co)(x1ay) # (C1V C2)(X{a}) = X{arp}»
Ci V C; is not a fuzzy closure operator. We obtain S¢, as follows:
S, = {x(a3> 1}, Sc, = {xq}1}-
By Corollary 4.4, we obtain
Sc, NSe, = {i}
By Theorem 4.10, we have, for all A € IX,
CimCy(\) = CSclﬂch (AN = 1.
Using Theorem 4.8, we can define subspaces and products in the
obvious way.

DEFINITION 4.12. Let (X, C) be a fuzzy closure space and A a subset
of X. The pair (A4,C4) is said to be a subspace of (X,C) if C4 is the
coarsest fuzzy closure operator on X which the inclusion function ¢ is a
fuzzy closure map.

DEFINITION 4.13. Let {(X;,C;) | ¢ € I'} be the family of fuzzy clo-
sure spaces. Let X = [[,. X: be a product set. The coarsest fuzzy
closure operator C = ®C; on X with respect to (X, m;, (X;, C;)) where
m; : X — X, is projection map is called the product fuzzy closure opera-
torof {C; |1 €T}

Using Theorem 4.8, we have the following corollary.

COROLLARY 4.14. Let {(X;,C;) | ¢ € T'} be a family of fuzzy clo-
sure spaces. Let X = [[,.r X; be a product set and, for each i € T,
7; : X — X; a projection. The structure C = ®C; : I* — IX is defined
by

Then:

(1) C is the coarsest fuzzy closure operator on X which for eachi € T,
m; I8 a fuzzy closure map.

(2) A function f : (Y,C") — (X, C) is a fuzzy closure map if and only
ifmyo f:(Y,C") — (X;,C;) is a fuzzy closure map, for each i € T.
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DEFINITION 4.15. Let (L1, V, A, <) and (Lg, V, A, <) be complete lat-
tices. A function f : Ly — Lo is called a complete lattice isomorphism if
it satisfies the following conditions:

(1) f is bijective,

(2) fVierai) = Vier flai) and f(Ajerai) = Ajer f(ai) for any
{a; |1 €T} C Ly,

(3) f_l(vz'er bi) = Vier f7*(b;) and f_l(/\ier bi) = Nier f7H(b)
for any {b; | i € T'} C Ls.

Two lattices L; and Lo are complete lattice isomorphic if there exists
complete lattice isomorphism f : Ly — Ls.

THEOREM 4.16. Let (F(S),V,A,C) and (F(C),Y,M, <) be complete
lattices where F(S) and F(C) are two families of fuzzy closure systems
and fuzzy closure operators on X. Define a function f : F(S) — F(C)
by f(S8) = Cs. Then f is a complete lattice isomorphism, that is, F(S)
and F(C) are complete lattice isomorphic.

Proor. (1) Define a function g : F'(C) — F(S) by g(C) = Sc. Then
F(9(C)) = f(Sc) = Cso = C and g(f(S)) = f(Cs) = Scs = S from
Theorem 2.4. Hence f is bijective.

(2) In Theorem 4.9, let f; =idx : X — X be an identity map for
eachi € . Then Cy,__ s, = A\icr Cs,- Since f(V,cr Si) = Oy, . s, and
Uier f(Si) = UierCs,, for any {S; | i € I'} C F(S), by Theorem 4.10,

F\/S)=Cy,_.s. = \ Cs, = UierCs, = Uicr f(Si).
i€l ier
Since f(A;er Si) = Criers; and Mier f(Si) = MierCs,, by Theorem
4.10, for any {S; | i € T'} C F(9),
Mier f(Si) = MierCs, = Cnsc, = Cns, = FON S).
iel

(3) In Theorem 4.8(3), let f; = idx : X — X be an identity map for

each i € I. For any {C; |i € T} C F(C),
ier ier

Let g(MierCi) = Smierc; and A 9(Ci) = Aier Sc;, for any {C; |

i € '} C F(C). Since MierC; = Cns,, from Theorem 4.10,

g(@iEFCi) = S@ierCi = SCnsci = m Sc, = /\ g(ci)'
il i€l
By (1), (2) and (3), f is a complete lattice isomorphism. g
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EXAMPLE 4.17. Let X = {a,b,c} be a set. Define S; as follows:

S = {X{a}aX{a,b}a i}v Sy = {X{b}a X{a,b}> i}

By Corollary 4.4, we obtain
S1V 82 = {0, X{a}> X{b}> X{ap}> 1},

S1 A8y = {X{ap}: 1}-

Also, we obtain Cs, : I* — I as follows:

X{a}> lf() <A< X{a}>
Cs,(A) =13 X{ab}r AL X}y A< X(ap)

1, otherwise,

X{b}s lf() <AL X{b}»
Cs,(N) =13 X{ab) HAZXEH A< X{ab)
i, otherwise.

By Theorem 4.10, we have

(0, if A =0,

X{a}» A< X AL X0)

Cs; UCs,(A) = ¢ Xpppr A< Xge3, A Z X{a}s

X{a}> AL X{a}s A& X} A S X{ap)
L 1, otherwise,

X{a,b}> if0 <AL X{a,b}s
i, otherwise.

Cs, MCs,(A) = {
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