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A STUDY ON EQUIVALENT FORMS OF THE AXIOM
OF CHOICE IN AN WELL-POINTED TOPOS

I Sung Kim

ABSTRACT. There are various forms of the axiom of choice and also
various weak forms of the axiom of choice in a topos. This paper
give equivalent forms of the axiom of choice in a well-pointed topos.

1. Introduction

In a topos, the aziom of choice can be expressed as following.

(AC1) Every epimorphism is a retraction.

(AC2) For any noninitial object A and f : A — B, there exists a
morphism g : B — A such that fogo f = f.

(AC3) For any noninitial object A, there exists o : 24 — A such
that for all f : 1 — Q4 we have 0 o f € f where f' : A’ — Ais
a monomorphism, provided that evo (f x 74) is not the characteristic
morphism of 0 — A.

(WO) For any P and q : U — QF if there exist o : V — U and
p:V — P such that (ga,p) factors through € p— QF x P, then there
exists ag : Vo — U and pp : Vo — P such that (qao, po) factors through
€p, and such that for all 5: W — Vy and all p; : W — P, if (qaof,p1)
factors through €p, then (po3,p1) factors through a monomorphism
P1 — P x P.

(ASC) Every separated epimorphism of £ is a retraction.

(IAC1) The functor (—)“ : £ — £ preserves epimorphisms for every
object A.

(IAC2) For any epimorphism u : C — D, there exists an object V
with epimorphism V' — 1 such that V*(u) is a retraction in £/V.
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(IAC3) If f: X — Y is an epimorphism in &, then 7y (f) has global
support.

A. M. Penk [7] showed that (AC2) and (AC3) are equivalent in a
well-pointed topos, M. M. Mawanda [5] showed that (AC1), (AC2) and
(ASC) are equivalent in a well-pointed topos and P. T. Johnstone [2]
showed that (IAC1), (IAC2) and (IAC3) are equivalent in any topos.
Hence we know that (AC1), (AC2), (AC3) and (ASC) are equivalent in
a well-pointed topos. In this paper, we show that (AC2) is equivalent to
(WO) in a well-pointed topos and also show that (IAC1) is equivalent to
(ASC) in a well-pointed topos. Therefore we know that (AC1), (AC2),
(AC3), (IAC1), (IAC2), (IAC3), (ASC) and (WO) are equivalent in a
well-pointed topos.

2. Preliminaries

In this section, we state some definitions and properties which will
serve as the basic tools for the arguments used to prove our results.

DEFINITION 2.1. An elementary topos is a category £ that satisfies
the following;

(T1) € is finitely complete,
(T2) £ has exponentiation,
(T3) € has subobject classifier.

(T2) means that for every object A in £, endofunctor (—) x A has its
right adjoint (—)“4. Hence for every object A in £, there exists an object
B4, and a morphism evys : B4 x A — B, called the evaluation map of
A, such that for any Y and f : Y x A — B in £, there exists a unique
morphism g such that evs o (g X 14) = f;

YxA ———f—>B

!JXiAl lis

BAxA -4, B

And subobject classifier in (T3) is an £-object 2, together with a
morphism T : 1 — Q such that for any monomorphism A : D — C, there
is unique morphism xp : C — €, called the character of h : D — C that
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makes the following diagram a pull-back;

D———!——>l

n| |

C Xh

DEFINITION 2.2. A topos £ is called Boolean if for every object D
in £, (Sub(D), €) is a Boolean algebra where Sub(D) is the class of
monomorphism with common codomain D, and we say g € f if there
exists a morphism h : B — A such that f oh = g where f: A — D and
g : B — D are monomorphisms.

LEMMA 2.3. For any topos &, the following statements are equivari-
ant;
(1) € is Boolean.
(2) Sub(Q?) is a Boolean algebra.
(3) T:1— Q has a complement in Sub(Q).
(4) L:1 — Q is the complement of T in Sub().
(5) TU L = 1q in Sub(Q).
(6) & is classical.
(7) 41 : 1 — 1 + 1 is a subobject classifier.
PROOF. See Goldblatt [1]. O
EXAMPLE 2.4. The category M — Set is a non-Boolean topos.
PROOF. See Goldblatt [1], Madanshekaf [4] and Mehdi Ebahimi [6].00

DEFINITION 2.5. A topos is called well-pointed if it satisfies the ex-
tensionality principle for morphism, i.e., If f,g : A — B are a pair of
distinct parallel morphisms, then there is an element ¢ : 1 — A of A
such that foa # goa.

LEMMA 2.6. In a well-pointed topos, (AC2) is equivalent to (AC3).
PROOF. See Penk [7]. O

LEMMA 2.7. In a well-pointed topos, (AC1), (AC2) and (ASC) are
equivalent.

PROOF. See Mawanda [5]. ]
LEMMA 2.8. In any topos, (IAC1), (IAC2) and (IAC3) are equivalent.
PROOF. See Johnstone [2]. O
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3. Main parts

THEOREM 3.1. In a well-pointed topos £, (WO) implies (AC2).

Proor. Let f: A — B be a morphism in &£, then there exist an
epimorphism e : A — X and a monomorphism m : X — B such that
f = moe. By hypothesis, there exists a morphism ¢ : B — X such
that t om = ix. We only show that there is a morphism s : X — A
such that f = fo(sot)of = f. Since e : A — X is epimorphism,
there is a morphism ¢ : X — Q“ which is the interpretation of the
term {ale(a) = z}. By definition of (WO), we can find an epimorphism
r:V — X and a morphism n : V — A such that n is a minimal choice
of gr. Since every epimorphism is coequalizer. there are morphisms
u,v : W — V such that the following square cominutes.

w2V

Vv — X

Thus we get gorov = gorowu. Also nu, nv are both minimal choice
of gorov = gorou. By definition of (WO), we can find nu = nv. Since
every epimorphism is coequalizer, there is a morphism s : X — A such
that sor = n. Also there is a morphism ¢: X —€4 such that kos=c¢
where k : A —€ 4 and € 4 is the subobject classified by ev : Q4 x A — Q.
Then we have (g, s) = loc = lokos = (goeos, s) where [ : € 4— Q4 x A.
Since g is a monomorphism, we have that f = fo(sot)o f = f. O

THEOREM 3.2. In a well-pointed topos £, (AC2) implies (WO).

ProOOF. Let X, be noninitial object in £. Since £ satisfies (AC2),
there is a morphism % : NXy; — Xy such that ¢ o g; € g, where NX|
is the object of noninitial subobjects of Xo with the usual ordering,
gi : U — NXj is a morphism and g; : Xj — X, is a monomorphism.
Since £ is Boolean, we get that —(¢ o go) = g; where the pullbacks of
¥ o go and —(¢) o go) is the initial object, —(¢ o0 g;) = g2 where the
pullbacks of ¥ o g1 and — (4 0 g1) is the initial object, etc. Generally, we
get that —(¢og,_1) = g, where the pullbacks of ¥o0g,,—y and —(pog,_1)
is the initial object.

Thus we construct ¢ : Xo — NXq such that I'm(¢) is a subobject of
N Xy consists of gg, —(vogo), —(¥og1), ... and —(¢p0g,,_1), where —g,,
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is an initial object, and ¢y o ¢ = ix,. Then Im(¢) is a linear ordered
with minimal choice. Since ¢ is a monomorphism, Xy has an ordering
with minimal choice. i

THEOREM 3.3. In a well-pointed topos £, (ASC) implies (IAC1).

PROOF. Since £ is well-pointed, £ satisfies (ASC) if and only if every
epimorphism in £ has a right inverse. Let e : A — B be an epimorphism.
We claim that, for any object X, eX : AX — BX is an epimorphism.
For any v : X — B, since epimorphism ¢ : A — B in £ has a right
inverse, there is a morphism r : B — A such that eor = ip.

A—S5 B

Hence we get a morphism rov : X — A such that e (rov) = eorov =
v. Thus eX is an epimorphism.

THEOREM 3.4. In a well-pointed topos £, (IAC1) implies (ASC).

PrROOF. Let f : A — B be an epimorphism. Since & is finitely
complete category with exponentiation, we have a pull-back diagram.

Ip(f) —— 1

l |

A8 L°, ps

Since B is internally projective, fZ is an epimorphism. By the prop-
erty of pull-back, u : IIg(f) — 1 is an epimorphism . Since &£ is well-
pointed, u : IIg(f) — 1 has a right inverse v : 1 — IIg(f) such that
u ov = 4;. Since the pull-back functor has a right adjoint, there is a
morphism v’ : B*(1) — f such that fov' =ig. Thus & satisfies (AC1).
Since (AC1) implies Booleanness, every separated epimorphism is an
epimorphism by Lemma 2.3. Hence £ satisfies (ASC). O

COROLLARY 3.5. In a well-pointed topos £, (AC1), (AC2), (AC3),
(IAC1), (IAC2), (IAC3), (ASC) and (WO) are equivalent.

Proor. By Lemma 2.6, Lemma 2.7, Lemma 2.8, Theorem 3.1, The-
orem 3.2, Theorem 3.3 and Theorem 3.4. 0
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