FOLDING THEORY OF IMPLICATIVE/FANTASTIC FILTERS IN LATTICE IMPLICATION ALGEBRAS

Young Bae Jun and Seok Zun Song

ABSTRACT. We discuss the n-fold implicative/fantastic filters in lattice implication algebras, which are extended notions of implicative/fantastic filters. Characterizations of n-fold implicative/fantastic filters are given. Conditions for a filter to be n-fold implicative are provided. Extension property for an n-fold fantastic filter is established.

1. Introduction

Non-classical logic has become a considerable formal tool for computer science and artificial intelligence to deal with fuzzy information and uncertain information. Many-valued logic, a great extension and development of classical logic, has always been a crucial direction in non-classical logic. In order to research the logical system whose propositional value is given in a lattice, Xu [5] proposed the concept of a lattice implication algebra, which is an algebraic structure that is established by combining a lattice and an implication algebra, and discussed some of their properties. For the general development of lattice implication algebras, filter theory plays an important role. Xu and Qin [7] introduced the notion of (implicative) filters in a lattice implication algebra, and investigated their properties. In [4], Jun et al. introduced the concepts of a positive implicative filter and an associative filter in a lattice implication algebra, and gave a relation between a positive implicative filter, an associative filter and an implicative filter. One of the authors (Y. B. Jun) gave an equivalent condition of a filter, and provided some equivalent conditions for a filter to be an implicative filter in a lattice

Received May 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 03G10, 03B05, 03B50, 06B10.

Key words and phrases: lattice implication algebra, (n-fold) implicative/fantastic filter

This work was supported by grant R01-2001-000-00004-0 from the Korea Science and Engineering Foundation.

implication algebra, and discussed fantastic filters and n-fold implicative filters in a lattice implication algebra (see [1], [2], [3]).

In this paper, we introduce the concept of n-fold implicative/fantastic filters in lattice implication algebras, and investigate some of their properties. We give characterizations of n-fold implicative/fantastic filters, and provide conditions for a filter to be an n-fold implicative filter. We establish an extension property for an n-fold fantastic filter, and give a relation between a weak n-fold fantastic filter and an n-fold fantastic filter.

2. Preliminaries

DEFINITION 2.1. [5] A lattice implication algebra is defined to be a bounded lattice $(L; \vee, \wedge, 0, 1)$ with order-reversing involution "I" and a binary operation " \rightarrow " satisfying the following axioms:

- (I1) $x \to (y \to z) = y \to (x \to z),$
- (I2) $x \rightarrow x = 1$,
- (I3) $x \rightarrow y = y' \rightarrow x'$,
- (I4) $x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$,
- (I5) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$,
- (L1) $(x \lor y) \to z = (x \to z) \land (y \to z),$
- (L2) $(x \wedge y) \rightarrow z = (x \rightarrow z) \vee (y \rightarrow z),$

for all $x, y, z \in L$.

A lattice implication algebra L is called a lattice H-implication algebra if it satisfies $x \vee y \vee ((x \wedge y) \to z) = 1$ for all $x, y, z \in L$. We can define a partial ordering \leq on a lattice implication algebra L by $x \leq y$ if and only if $x \to y = 1$.

EXAMPLE 2.2. [7] Let $L := \{0, a, b, c, 1\}$. Define the partial order relation on L as 0 < a < b < c < 1, and define

$$x \wedge y := \min\{x, y\}, x \vee y := \max\{x, y\}$$

for all $x, y \in L$ and "\textit{"} and "\to " as follows:

\boldsymbol{x}	x'		\rightarrow	0	a	b	c	1
0	1	•	0	1	1	1	1	1
a	c		a	c	1	1	1	1
b	b		b	b	c	1	1	1
c	a		$egin{array}{c} b \ c \end{array}$	a	b	c	1	1
1	0		1	0	a	b	c	1

Then $(L, \vee, \wedge, \prime, \rightarrow)$ is a lattice implication algebra.

In the sequel the binary operation " \rightarrow " will be denoted by juxtaposition. In a lattice implication algebra L, the following hold (see [5]):

- (p1) 0x = 1, 1x = x and x1 = 1.
- (p2) $xy \leq (yz)(xz)$.
- (p3) $x \le y$ implies $yz \le xz$ and $zx \le zy$.
- (p4) x' = x0.
- $(p5) \ x \lor y = (xy)y.$
- (p6) $((yx)y')' = x \land y = ((xy)x')'.$
- $(p7) \ x \le (xy)y.$

In a lattice H-implication algebra L, the following hold (see [6]).

- $(p8) \ x(xy) = xy.$
- (p9) x(yz) = (xy)(xz).

DEFINITION 2.3. [7] A subset F of a lattice implication algebra L is called a *filter* of L if it satisfies

- (f1) $1 \in F$,
- (f2) $\forall x, y \in L, x \in F, xy \in F \implies y \in F.$

In particular, if we replace x by a special element $w \in L$ in (f2), then we say that F is a w-filter of L.

DEFINITION 2.4. [7] A subset F of a lattice implication algebra L is called an *implicative filter* of L if it satisfies (f1) and

(f3)
$$\forall x, y, z \in L, \ x(yz) \in F, \ xy \in F \implies xz \in F.$$

In particular, if we replace x by a special element $w \in L$ in (f3), then we say that F is an *implicative* w-filter of L.

PROPOSITION 2.5. [1] Every filter F of a lattice implication algebra L has the following property: $x \leq y$ and $x \in F$ imply $y \in F$.

DEFINITION 2.6. [2] A nonempty subset F of a lattice implication algebra L is called a *fantastic filter* of L if it satisfies (f1) and

(f4)
$$\forall x, y, z \in L, \ z(yx) \in F, \ z \in F \implies ((xy)y)x \in F.$$

Both an implicative filter and a fantastic filter are a filter (see [2, 7]).

3. n-fold implicative filters

In what follows, let n and L denote a positive integer and a lattice implication algebra, respectively, unless otherwise specified. For any

elements x and y of L, let $x^n y$ denote $x(\cdots(x(xy))\cdots)$ in which x occurs n times, and $x^0y=y$.

DEFINITION 3.1. [3] A nonempty subset F of L is called an n-fold implicative filter of L if it satisfies (f1) and

(f5)
$$\forall x, y, z \in L, \ x^n(yz) \in F, \ x^ny \in F \implies x^nz \in F.$$

In particular, if we replace x by a special element $w \in L$ in (f5), then we say that F is an n-fold implicative w-filter of L.

Note that every n-fold implicative filter of L is a filter of L, but the converse is not true (see [3]). For any $a \in L$ let A(a) denote the set of all elements of L which are greater than or equal to a, i.e.,

$$A(a) := \{ x \in L \mid a \le x \}.$$

Note that $1 \in A(a)$, and A(a) is not a filter of L in general. For example, let $X = \{0, a, b, c, 1\}$ be a lattice implication algebra in Example 2.2. The set $A(b) = \{b, c, 1\}$ is not a filter of L because $ba = c \in A(b)$ but $a \notin A(b)$. Y. Xu and K. Y. Qin gave a condition for the set A(a) to be a filter of L as in the following proposition.

PROPOSITION 3.2. For any $a \in L$ the set A(a) is a filter of L if and only if $a \le x$ whenever $a \le yx$ and $a \le y$ for all $x, y \in L$.

THEOREM 3.3. Let w be an element of L. If A(w) is an n-fold implicative filter of L, then for all $x, y \in L$,

(1)
$$w^{n+1}(xy) = 1, w^{n+1}x = 1 \Rightarrow w^{n+1}y = 1.$$

PROOF. Suppose that A(w) is an n-fold implicative filter of L and let $x, y \in L$ be such that $w^{n+1}(xy) = 1$ and $w^{n+1}x = 1$. Then $w^n(xy) \in A(w)$ and $w^nx \in A(w)$. Since A(w) is an n-fold implicative filter of L, it follows from (f5) that $w^ny \in A(w)$ so that $w \leq w^ny$, that is, $w^{n+1}y = 1$. This completes the proof.

In the following theorem, we provide a condition for A(w) to be an n-fold implicative w-filter of L.

THEOREM 3.4. Let w, x and y be elements of L that satisfies the condition (1). Then A(w) is an n-fold implicative w-filter of L.

PROOF. Let $y, z \in L$ be such that $w^n(yz) \in A(w)$ and $w^ny \in A(w)$. Then $w \leq w^n(yz)$ and $w \leq w^ny$, which imply that $w^{n+1}(yz) = 1$ and $w^{n+1}y = 1$. Using the condition (1), we get $w(w^nz) = w^{n+1}z = 1$, i.e., $w \leq w^nz$ and so $w^nz \in A(w)$. Therefore A(w) is an n-fold implicative w-filter of L.

Since every n-fold implicative w-filter is a w-filter (see [3, Theorem 3.3]), we have the following corollary.

COROLLARY 3.5. Let w, x and y be elements of L that satisfies the condition (1). Then A(w) is a w-filter of L.

LEMMA 3.6. [3, Theorem 3.4] Let F be a filter of L. Then the following are equivalent.

- (i) F is an n-fold implicative filter of L.
- (ii) $x^{n+1}y \in F$ implies $x^ny \in F$.
- (iii) $x^n(yz) \in F$ implies $(x^ny)(x^nz) \in F$.

Note that the trivial filter $\{1\}$ of L is not n-fold implicative (see [3]). We provide a condition for the trivial filter $\{1\}$ to be n-fold implicative.

THEOREM 3.7. For every $a \in L$, if A(a) is a filter of L then the trivial filter $\{1\}$ is n-fold implicative for every n.

PROOF. Let $x, y \in L$ be such that $x^{n+1}y = 1$. Then $x \leq x^ny = x(x^{n-1}y)$, and so $x(x^{n-1}y) \in A(x)$. Since $x \in A(x)$, it follows from (f2) that $x^{n-1}y \in A(x)$, i.e., $x \leq x^{n-1}y$ and thus $x^ny = 1$. Hence, by Lemma 3.6, we conclude that $\{1\}$ is an n-fold implicative filter of L. \square

COROLLARY 3.8. If L satisfies the condition (1) for all $w, x, y \in L$, then the trivial filter $\{1\}$ of L is n-fold implicative.

Combining Proposition 3.2 and Theorem 3.7, we have the following corollary.

COROLLARY 3.9. If L satisfies the condition

$$(2) a \le yx, a \le y \Rightarrow a \le x,$$

then $\{1\}$ is an n-fold implicative filter of L.

DEFINITION 3.10. [3] A lattice implication algebra L is said to be n-fold implicative if it satisfies the equality $x^{n+1}y = x^ny$ for all $x, y \in L$.

LEMMA 3.11. [3, Theorem 3.7] A lattice implication algebra L is n-fold implicative if and only if the trivial filter $\{1\}$ is n-fold implicative.

Using Theorem 3.7 and Lemma 3.11, we give a condition for a lattice implication algebra to be n-fold implicative.

THEOREM 3.12. (i) For any $a \in L$, if A(a) is a filter of L then L is n-fold implicative.

(ii) If L satisfies the condition (1) or (2), then L is n-fold implicative.

Lemma 3.13. [3, Theorem 3.10] A lattice implication algebra L is n-fold implicative if and only if every filter is n-fold implicative.

Combining Theorem 3.12 and Lemma 3.13, we obtain the following corollary.

COROLLARY 3.14. (i) For any $a \in L$, if A(a) is a filter of L, then every filter of L is n-fold implicative.

(ii) If L satisfies the condition (1) or (2), then every filter of L is n-fold implicative.

For any nonempty subset F of L and $a \in L$, denote by $F_{a,n}$ the set $\{x \in L \mid a^n x \in F\}$. Note that if F is a filter of L, then $F_{1,n} = F$ and $1 \in F_{a,n}$. In general, $F_{a,n}$ is not a filter of L even if F is a filter of L. For example, let $L := \{0, a, b, c, 1\}$ be a lattice implication algebra in Example 2.2, and consider the trivial filter $\{1\}$ of L. Then $\{1\}_{c,2} = \{b, c, 1\}$ is not a filter of L since $ba = c \in \{1\}_{c,2}$ but $a \notin \{1\}_{c,2}$.

THEOREM 3.15. If F is a filter of a lattice H implication algebra L, then the set $F_{a,n}$ is a filter of L for all $a \in L$.

PROOF. Let $x, y \in L$ be such that $x \in F_{a,n}$ and $xy \in F_{a,n}$. Then $a^n x \in F$ and $(a^n x)(a^n y) = a^n (xy) \in F$, which imply that $a^n y \in F$, that is, $y \in F_{a,n}$. Hence $F_{a,n}$ is a filter of L.

THEOREM 3.16. Let F be a filter of L. If the set $F_{a,n}$ is a filter of L for all $a \in L$, then F is an n-fold implicative filter of L.

PROOF. Let $x, y, z \in L$ be such that $x^n(yz) \in F$ and $x^ny \in F$. Then $yz \in F_{x,n}$ and $y \in F_{x,n}$. Since $F_{x,n}$ is a filter of L, it follows that $z \in F_{x,n}$, that is, $x^nz \in F$. Hence F is an n-fold implicative filter of L. \square

Combining Theorems 3.15 and 3.16 induced the following corollary.

COROLLARY 3.17. Every filter of a lattice H implication algebra is n-fold implicative.

We know from [7, Proposition 8] that if every filter of L is implicative, then L is a lattice H implication algebra. We now pose an open problem.

OPEN PROBLEM 3.18. If there exists $k (\geq 2) \in \mathbb{N}$ such that every filter of L is k-fold implicative, then is L a lattice H implication algebra?

4. n-fold fantastic filters

DEFINITION 4.1. A nonempty subset F of L is called an n-fold fan-tastic filter if it satisfies (f1) and

(f6)
$$\forall x, y, z \in L, z(yx) \in F, z \in F \Rightarrow ((x^n y)y)x \in F.$$

DEFINITION 4.2. A nonempty subset F of L is called a weak n-fold fantastic filter of L if it satisfies (f1) and

(f7)
$$\forall x, y, z \in L, z((y^n x)x) \in F, z \in F \Rightarrow (xy)y \in F.$$

Putting y = 1 and y = x in (f6) and (f7), respectively, and using (p1) and (I2), we know that every (weak) n-fold fantastic filter is a filter.

In Theorem 4.10, we will show that every n-fold fantastic filter is a weak n-fold fantastic filter.

EXAMPLE 4.3. Let $L := \{0, a, b, c, d, 1\}$ be a set with the following Hasse diagram as a partial ordering. Define a unary operation " \rightarrow " and a binary operation " \rightarrow " as follows:

Define \vee - and \wedge -operations on L as follows:

$$x \vee y := (xy)y$$
 and $x \wedge y := ((x'y')y')'$

for all $x, y \in L$. Then L is a lattice implication algebra. It is easy to see that $F := \{a, 1\}$ is a 2-fold fantastic filter of L.

THEOREM 4.4. Let F be a filter of L. Then

- (i) F is an n-fold fantastic filter of L if and only if $((x^n y)y)x \in F$ for all $x, y \in L$ with $yx \in F$.
- (ii) F is a weak n-fold fantastic filter of L if and only if $(xy)y \in F$ for all $x, y \in L$ with $(y^n x)x \in F$.

PROOF. Assume that F is an n-fold fantastic filter of L and let $x, y \in L$ be such that $yx \in F$. Then $1(yx) = yx \in F$ and $1 \in F$. It follows from (f6) that $((x^ny)y)x \in F$. Conversely, let F be a filter of L such that $((x^ny)y)x \in F$ for all $x, y \in L$ with $yx \in F$. Let $x, y, z \in L$ be

such that $z(yx) \in F$ and $z \in F$. Then $yx \in F$ by (f2), and hence $((x^ny)y)x \in F$ by assumption. Thus F is an n-fold fantastic filter of L. Similar argument induces the second part.

THEOREM 4.5. (Extension property for an n-fold fantastic filter) Let F and G be filters of L such that $F \subseteq G$. If F is n-fold fantastic, then so is G.

PROOF. Let $x, y \in L$ be such that $yx \in G$. Setting w = (yx)x, then $yw = y((yx)x) = (yx)(yx) = 1 \in F$. Since F is n-fold fantastic, it follows from Theorem 4.4(i) and (I1) that

$$(yx)(((w^n y)y)x) = ((w^n y)y)((yx)x) = ((w^n y)y)w \in F \subseteq G,$$

which implies from (f2) that $((w^n y)y)x \in G$. Since $x \leq w$, we have $w^n y \leq x^n y$, and so $((w^n y)y)x \leq ((x^n y)y)x$. Using Proposition 2.5, we know that $((x^n y)y)x \in G$, and hence G is an n-fold fantastic filter of L by Theorem 4.4(i).

COROLLARY 4.6. Every filter of L is n-fold fantastic if and only if the filter $\{1\}$ is n-fold fantastic.

Let F be a filter of L. We define a binary relation " \sim " on L as follows: For every $x,y\in L, \ x\sim y$ if and only if $xy\in F$ and $yx\in F$. Then " \sim " is a congruence relation on L. Denote $L/F:=\{[x]\mid x\in L\}$, where $[x]:=\{y\in L\mid x\sim y\}$, and define binary operations " \sqcup ", " \sqcap ", " \square " and unary operation " \bullet " on L/F as follows.

 $[x] \sqcup [y] = [x \vee y], [x] \sqcap [y] = [x \wedge y], [x] \rightharpoonup [y] = [xy], \text{ and } [x]^{\bullet} = [x'],$ respectively. Then $(L/F, \sqcup, \sqcap, \bullet, \rightharpoonup)$ is a lattice implication algebra (see [7]).

THEOREM 4.7. A filter F of L is n-fold fantastic if and only if every filter of the quotient algebra L/F is n-fold fantastic.

PROOF. Assume that F is an n-fold fantastic filter of L and let $x, y \in L$ be such that $[x] \rightharpoonup [y] = [1]$. Then $xy \in F$, and so $((y^n x)x)y \in F$ by Theorem 4.4(i). Hence

$$(([y]^n \rightharpoonup [x]) \rightharpoonup [x]) \rightharpoonup [y] = [((y^n x)x)y] = [1],$$

which proves that $\{[1]\}$ is an *n*-fold fantastic filter of L/F. By Corollary 4.6, every filter of L/F is *n*-fold fantastic. Conversely, suppose that every filter of L/F is *n*-fold fantastic and let $x, y \in L$ be such that $yx \in F$. Then $[y] \rightharpoonup [x] = [yx] = [1]$. Since $\{[1]\}$ is an *n*-fold fantastic filter of L/F, it follows from Theorem 4.4(i) that

$$[((x^n y)y)x] = (([x]^n \rightharpoonup [y]) \rightharpoonup [y]) \rightharpoonup [x] = [1],$$

that is, $((x^n y)y)x \in F$. Hence F is an n-fold fantastic filter of L by Theorem 4.4(i).

A lattice implication algebra L is said to be n-fold fantastic if it satisfies the equality $((x^n y)y)x = yx$ for all $x, y \in L$.

Note that, in an n-fold fantastic lattice implication algebra, the notion of filters, n-fold fantastic filters, and weak n-fold fantastic filters coincide.

THEOREM 4.8. The following are equivalent.

- (i) L is n-fold fantastic.
- (ii) $(x^n y)y \leq (yx)x, \forall x, y \in L$.
- (iii) $x^n z \le yz$, $z \le x \Rightarrow y \le x$.
- (iv) $x^n z \le yz$, $z \le x, y \Rightarrow y \le x$.
- (v) $y \le x \Rightarrow (x^n y)y \le x$.

PROOF. (i) \Leftrightarrow (ii) If L is n-fold fantastic, then

$$((x^n y)y)((yx)x) = (yx)(((x^n y)y)x) = (yx)(yx) = 1,$$

that is, $(x^n y)y \leq (yx)x$ for all $x, y \in L$. Conversely, assume that the inequality $(x^n y)y \leq (yx)x$ holds for all $x, y \in L$. Then

$$(yx)(((x^ny)y)x) = ((x^ny)y)((yx)x) \ge ((x^ny)y)((x^ny)y) = 1,$$

and hence $(yx)(((x^ny)y)x) = 1$, i.e., $yx \le ((x^ny)y)x$. Now we have

$$(((x^n y)y)x)(yx) \ge y((x^n y)y) = (x^n y)(yy) = (x^n y)1 = 1,$$

and so $(((x^ny)y)x)(yx) = 1$, that is, $((x^ny)y)x \leq yx$. Hence L is n-fold fantastic.

(ii) \Rightarrow (iii) Let $x, y, z \in L$ be such that $x^n z \leq yz$ and $z \leq x$. Using (I1), (ii) and (p3),we have

$$1 = (x^n z)(yz) = y((x^n z)z) \le y((zx)x) = y(1x) = yx,$$

and so yx = 1, i.e., $y \le x$.

- $(iii) \Rightarrow (iv)$ is trivial.
- (iv) \Rightarrow (v) Let $x, y \in L$ be such that $y \leq x$. Note that $y \leq (x^n y)y$ and $x^n y \leq ((x^n y)y)y$. It follows from (iv) that $(x^n y)y \leq x$.
- (v) \Rightarrow (ii) Since $x \leq (yx)x$, we have $((yx)x)^n y \leq x^n y$ by the mathematical induction. Since $y \leq (yx)x$, it follows from (p3) and (v) that

$$(x^n y)y \le (((yx)x)^n y)y \le (yx)x.$$

This completes the proof.

THEOREM 4.9. A lattice implication algebra L is n-fold fantastic if and only if its trivial filter $\{1\}$ is n-fold fantastic.

PROOF. The necessity is obvious. Assume that $\{1\}$ is an *n*-fold fantastic filter of L and let w = (yx)x for every $x, y \in L$. Then

$$yw = y((yx)x) = (yx)(yx) = 1 \in \{1\},\$$

and hence $((w^n y)y)w = 1$, that is, $(w^n y)y \le w$ by Theorem 4.4(i). Now $x \le w$ implies $w^n y \le x^n y$, and so $(x^n y)y \le (w^n y)y$. It follows that $1 = ((w^n y)y)w \le ((x^n y)y)w$ so that $((x^n y)y)((yx)x) = ((x^n y)y)w = 1$, that is, $(x^n y)y \le (yx)x$. Hence, by Theorem 4.8, L is an n-fold fantastic lattice implication algebra. \square

THEOREM 4.10. Every n-fold fantastic filter is a weak n-fold fantastic filter.

PROOF. Let F be an n-fold fantastic filter of L. Then L/F is n-fold fantastic. Let $x, y \in L$ be such that $(y^n x)x \in F$. Then

$$\begin{array}{lll} [(xy)y] & = & ([x] \rightharpoonup [y]) \rightharpoonup [y] \\ & \geq & ([y]^n \rightharpoonup [x]) \rightharpoonup [x] & \text{by Theorem 4.8} \\ & = & [(y^nx)x] = [1], \end{array}$$

and so [(xy)y] = [1], i.e., $(xy)y \in F$. It follows from Theorem 4.4(ii) that F is a weak n-fold fantastic filter of L.

ACKNOWLEDGMENTS. The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

References

- [1] Y. B. Jun, *Implicative filters of lattice implication algebras*, Bull. Korean Math. Soc. **34** (1997), no. 2, 193–198.
- [2] _____, Fantastic filters of lattice implication algebras, Int. J. Math. Math. Sci. 24 (2000), no. 4, 277–281.
- [3] _____, On n-fold implicative filters of lattice implication algebras, Int. J. Math. Math. Sci. 26 (2001), no. 11, 695-699.
- [4] Y. B. Jun, Y. Xu and K. Y. Qin, Positive implicative and associative filters of lattice implication algebras, Bull. Korean Math. Soc. 35 (1998), no. 1, 53-61.
- [5] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20-27.
- [6] Y. Xu and K. Y. Qin, Lattice H-implication algebras and lattice implication algebra classes, J. Hebei Mining and Civil Engineering Institute 2 (1992), 139–143.
- [7] _____, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), no. 2, 251-260.

Young Bae Jun Department of Mathematics Education Gyeongsang National University Chinju (Jinju) 660-701, Korea E-mail: ybjun@nongae.gsnu.ac.kr

Seok Zun Song Department of Mathematics Cheju National University Cheju 690-756, Korea E-mail: szsong@cheju.ac.kr