DOI QR코드

DOI QR Code

Development a Downscaling Method of Remotely-Sensed Soil Moisture Data Using Neural Networks and Ancillary Data

신경망기법과 보조 자료를 사용한 원격측정 토양수분자료의 Downscaling기법 개발

  • 김광섭 (경북대학교 공과대학 토목공학과) ;
  • 이을래 (한국건설기술연구원)
  • Published : 2004.01.01

Abstract

The growth of water resources engineering associated with stable supply, management, development is essential to overcome the coming water deficit of our country. Large scale remote sensing and the analysis of sub-pixel variability of soil moisture fields are necessary in order to understand water cycle and to develop appropriate hydrologic model. The target resolution of coming Global monitoring of soil moisture field is about 10km which is not appropriate for the regional scale hydrologic model. Therefore, we need a downscaling scheme to generate hydrologic variables which are suitable for the regional hydrologic model. The results of the analysis of sub-pixel soil moisture variability show that the relationship between ancillary data and soil moisture fields shows there is very weak linear relationship. A downscaling scheme was developed using physically-based classification scheme and Neural Networks which are able to link the nonlinear relationship between ancillary data and soil moisture fields. The model is demonstrated by downscaling soil moisture fields from 4km to 0.2km resolution using remotely-sensed data from the Washita'92 experiment.

국내에서 예상되는 물부족 현상을 극복하기 위해서는 수문 현상의 이해를 통한 수자원의 안정된 확보, 관리, 개발 등 수자원 관련 기술격의 발전이 필수적이라 하겠다. 물순환계통의 올바른 이해와 적합한 모형의 개발 및 검증을 위해서는 강우 및 토양수분의 대규모 원격측정이 필수적일 뿐 아니라 관측 격자 내에서 일어나는 변화도에 대한 이해가 필요하다. 가까운 장래에 예상되는 전구 관측 토양수분자료의 격자크기인 10km는 중ㆍ소규모 지역의 수문ㆍ기상모델 적용에 한계를 가진다. 목적에 따라 각 모델들이 필요로 하는 입력 자료의 격자크기가 다른 반면 각 모델에 대한 적합한 크기의 격자를 가진 다양한 입력 자료의 부재는 토양수분자료에 대한 적합한 downscaling 기법을 필요로 한다. 사용 가능한 보조 자료와 토양수분의 선형상관관계는 상당히 낮으므로 이들 상호관계를 선형관계의 합으로 나타내는데 한계를 가진다. 그러므로 본 연구에서는 physically-based 분리기법과 자료들 간의 비선형 상관관계를 나타내는데 적합한 신경망 기법을 이용한 downscaling 기법을 개발하였다. 개발된 downscaling 기법은 Washita'92 실험으로부터 획득된 토양수분 및 보조 자료를 사용하여 4km자료를 0.2km자료로 downscaling 하였으며 출력자료는 기존의 전형적 기법에 의하여 smoothing된 자료보다 개선된 결과를 보여주었다.

Keywords

References

  1. Bardossy, A. and Lehmann, W., (1998). 'Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis,' J. Hydrol., Vol. 206, pp. 1-15 https://doi.org/10.1016/S0022-1694(97)00152-2
  2. Barnsley, M.F., (1988). Fractal everywhere, Academic Press
  3. Bindlish, R. and Barros, A., (2000). 'Disaggregation of rainfall for one-way coupling of atmosphereic and hydrological models in regions of complex terrain,' Global and Planetary Change, Vol. 25, pp. 111-132 https://doi.org/10.1016/S0921-8181(00)00024-2
  4. Bindlish, R. and Barros, A., (1996). 'Aggregation of digital terrain data using a modifide fractal interpolation scheme,' Computers & Geosci., Vol. 22, No. 8, pp. 907-917 https://doi.org/10.1016/S0098-3004(96)00049-0
  5. Dubayah, R., Wood, E.F., and Lavallee, D., (1997). 'Multiscaling analysis in distributed modeling and remote sensing: An application using soil moisture,' Scale in remote sensing and GIS, ed. Quattrochi, D.A. and Goodchild, M.F., pp. 93-112
  6. Gupta, V. and Waymire, E., (1990). 'Multiscaling properties of spatial rainfall and river flow distributions,' J. Geophy. Res., Vol. 95, No. D3, pp. 1999-2009 https://doi.org/10.1029/JD095iD03p01999
  7. Jackson, T.J., Le Vine, D.E., Swift, C.T., Schmugge, T.J., and Schiebe, F.R., (1995). Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita 92 experiment, Remote Sens. Environ., Vol. 53, pp. 23-37 https://doi.org/10.1016/0034-4257(95)00084-E
  8. Kim, G. and Yoo, C., (2000). Sampling error analysis for soil moisture estimation, KWRA Water Eng. Res., Vol. 1, No. 3, pp. 209-222
  9. Kim, G. and Barros, A.P. (2001). 'Quantitative flood forecasting using multisensor data and neural networks,' J. of Hydrol., Vol. 246, pp. 45-62 https://doi.org/10.1016/S0022-1694(01)00353-5
  10. Kim, G. and Barros, A.P., (2002). Spatial characterization of soil moisture fields using passive remotely sensed soil moisture images, Remote Sens. Environ. Vol. 81, pp. 393-403 https://doi.org/10.1016/S0034-4257(02)00014-7
  11. Kim, G. and Barros, A.P., (2002). Downscaling of remotely-sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data, Remote Sens. Environ., Vol. 83, pp. 400-413 https://doi.org/10.1016/S0034-4257(02)00044-5
  12. Kim, G., Valdes, J.B., North, G.R. and Yoo, C., 'Sampling error analysis for soil moisture estimation,' J. Hydrol. (in review)
  13. Kim, G., (2002). 'Spatial and temporal influences on soil moisture estimation,' KWRA Water Eng. Res., Vol. 3, No. 1, pp. 31-43
  14. Kim, G. (1999). Characterization of the spatialtemporal variability of soil moisture by remote sensing, Ph. D dissertation, Texas A&M University
  15. Mandelbrot, B., (1982). The fractal geometry of nature, Freeman (Pub.)
  16. Rind, D., (1982). 'The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM,' Monthly Weath Rev., Vol. 100, pp. 501-526 https://doi.org/10.1175/1520-0493(1982)110<1487:TIOGMC>2.0.CO;2
  17. Western, A.W., and Bloschl, G., (1999). 'On the spatial scaling of soil moisture,' J. Hydrol., Vol. 217, pp. 203-224 https://doi.org/10.1016/S0022-1694(98)00232-7
  18. Xie, H. and Sun, H., (1997). The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces, Fractals, Vol. 5, No. 4, pp. 625-634 https://doi.org/10.1142/S0218348X97000504

Cited by

  1. Forecast of Areal Average Rainfall Using Radiosonde Data and Neural Networks vol.39, pp.8, 2006, https://doi.org/10.3741/JKWRA.2006.39.8.717
  2. Field Applications on Groundwater Management Scheme of Subwatershed Unit in Hampyeong-Gun vol.46, pp.6, 2013, https://doi.org/10.9719/EEG.2013.46.6.545