HOLOMORPHIC MAPPINGS INTO SOME DOMAIN IN A COMPLEX NORMED SPACE

TATSUHIRO HONDA

ABSTRACT. Let D_1, D_2 be convex domains in complex normed spaces E_1, E_2 respectively. When a mapping $f: D_1 \to D_2$ is holomorphic with f(0) = 0, we obtain some results like the Schwarz lemma. Furthermore, we discuss a condition whereby f is linear or injective or isometry.

1. Introduction

Let $\Delta = \{z \in \mathbb{C}; |z| < 1\}$ be the unit disc in \mathbb{C} . The classical Schwarz lemma in one complex variable is as follows:

THE CLASSICAL SCHWARZ LEMMA. Let $f: \Delta \to \Delta$ be a holomorphic mapping with f(0) = 0. Then the following statements hold:

- (i) $|f(z)| \leq |z|$ for any $z \in \Delta$,
- (ii) if there exists $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, or if |f'(0)| = 1, then there exists a complex number λ of modulus 1 such that $f(z) = \lambda z$ and f is an automorphism of Δ .

It is natural to consider an extension of the above results to more general domains or higher dimensional spaces. However, condition (ii) in above no longer holds even for the bidisc $\Delta \times \Delta$. In fact, one can easily construct a holomorphic mapping $f: \Delta \times \Delta \to \Delta \times \Delta$ such that f(0) = 0 and ||f(z)|| = ||z|| for z in an open subset of $\Delta \times \Delta$, but f is not an isometry (cf. J. P. Vigué [18]). Nevertheless, E. Vesentini [15], [16] showed that if ||f(w)|| = ||w|| holds on B_1 and if every boundary point of the unit ball B_2 is a complex extreme point, then $f: B_1 \to B_2$ is a linear isometry, where B_1 , B_2 are the open unit balls in normed spaces E_1 , E_2 over \mathbb{C} respectively. J. P. Vigué [18], [19] proved that if every boundary point of the unit ball B for some norm in \mathbb{C}^n is a complex extreme

Received November 29, 2002.

2000 Mathematics Subject Classification: 32F45, 32H02.

Key words and phrases: Schwarz lemma, complex geodesic.

point of \overline{B} and if ||f(w)|| = ||w|| holds on an open subset U of B, then $f: B \to B$ is a linear automorphism of \mathbb{C}^n . H. Hamada [6] generalized the above classical Schwarz lemma to the case where ||f(w)|| = ||w|| holds on some local complex submanifold of codimension 1. The author [10], [11] generalized to the case where ||f(w)|| = ||w|| holds on a non-pluripolar subset. H. Hamada and the author [8] generalized to the case where ||f(w)|| = ||w|| holds on a totally real submanifold.

In this paper, we consider some condition whereby a holomorphic mapping is linear or injective or isometric.

2. Notation and preliminaries

All topologies considered throughout this paper shall be Hausdorff. A vector space E over \mathbf{C} is said to be $locally\ convex$ if E is equipped with the Hausdorff topology defined by some family Π of seminorms such that $\sup_{\alpha \in \Pi} \alpha(x) > 0$ for all $x \in E \setminus \{0\}$, that is, a fundamental system of neighborhoods of x in this topology is made up of finite intersections of sets $x + \alpha^{-1}([0,a]), \ \alpha \in \Pi, \ 0 < a < \infty$. Then all seminorms in Π are continuous, but the family cs(E) of all continuous semi-norm on E is generally larger than Π . A sequence $\{z_n\}_{n\in\mathbb{N}}$ on a locally convex space E is a Cauchy sequence in E if for each $\alpha \in \Pi$ and each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $\alpha(z_n - z_m) < \varepsilon$ for all $m, n \geq n_0$. A locally convex space E is said to be sequentially complete if any Cauchy sequence converges.

Let F be a locally convex space, let E be a sequentially complete locally convex space. Let U be an open subset in F, and let $f: U \to E$ be a holomorphic mapping. For $a \in U$, there uniquely exists a sequence of n-homogeneous polynomials $P_n: F \to E$ such that the expansion

$$f(a+z) = f(a) + \sum_{n=1}^{\infty} P_n(z)$$

holds for all z in the largest balanced subset of U-a. This series is called the Taylor expansion of f by n-homogeneous polynomials P_n at a.

Let $\Delta = \{z \in \mathbb{C}; |z| < 1\}$ be the unit disc in the complex plane \mathbb{C} , and let $\gamma(\lambda) = 1/(1-|\lambda|^2)$. The Poincaré distance ρ on Δ is defined for $z, w \in \Delta$ as follows:

$$\rho(z, w) = \frac{1}{2} \log \frac{1 + |(z - w)/(1 - z\bar{w})|}{1 - |(z - w)/(1 - z\bar{w})|}.$$

Let D be a domain in a sequentially complete locally convex space E. The gauge N_D of D is defined for $z \in E$ as follows:

$$N_D(z) = \inf\{\alpha > 0; z \in \alpha D\}.$$

The Carathéodory pseudodistance C_D on D is defined for $p,q\in D$ as follows:

$$C_D(p,q) = \sup \{ \rho(f(p), f(q)); f \in H(D, \Delta) \}.$$

The Lempert function δ_D of D is defined for $p,q\in D$ as follows:

$$\delta_D(p,q) = \inf\{\rho(\xi,\eta); \xi, \eta \in \Delta, \exists \varphi \in \mathcal{H}(\Delta,D) \text{ such that } \varphi(\xi) = p, \varphi(\eta) = q\}.$$

The Kobayashi pseudodistance K_D on D is defined for $p, q \in D$ as follows:

$$K_D(p,q) = \inf \left\{ \sum_{k=1}^m \delta_D(x_k, x_{k+1}); m \in \mathbb{N}, \{ p = x_1, x_2, \dots, x_{m+1} = q \} \subset D \right\}.$$

Then we have established between the various pseudodistances on a domain D:

$$C_D \leq K_D \leq \delta_D$$
 on $D \times D$.

The infinitesimal Carathéodory pseudometric c_D for D is defined for $z \in D$, $v \in E$ as follows:

$$c_D(z, v) = \sup\{|d\psi(z)(v)|; \psi \in H(D, \Delta)\}.$$

The infinitesimal Kobayashi pseudometric κ_D for D is defined for $z \in D$, $v \in E$ as follows:

(2.1)
$$\kappa_D(z, v) = \inf\{\gamma(\lambda)|\alpha|; \exists \varphi \in H(\Delta, D), \exists \lambda \in \Delta \text{ such that } \varphi(\lambda) = z, \alpha \varphi'(\lambda) = v\}.$$

Then holomorphic mappings $\varphi \in H(\Delta, D)$ as in (2.1) certainly exist. In fact, if R is the radius of the open disc $\{\lambda \in \mathbf{C}; \lambda v \in U(z)\}$, where U(z) is a neighborhood of z, we may take the mapping

$$\varphi(\lambda) = z + \frac{\lambda}{\zeta}v$$

for $|\zeta| \geq 1/R$. Hence $\kappa_D(z, v) \leq 1/R$.

Moreover, for any $\psi \in H(D, \Delta)$ with $\psi(z) = 0$, we have $(\psi \circ \varphi)'(0) = d\psi(z)(\varphi'(0))$. It follows from this that

$$c_D \leq \kappa_D$$
 on $D \times E$.

We use convexity to obtain the relationship among the pseudodistances or pseudometrics (S. Dineen [3], T. Franzoni and E. Vesentini [5], M. Hervé [9] etc).

PROPOSITION 2.1. If D is a balanced convex domain in a sequentially complete locally convex space E, then

- (i) $C_D(0,x) = K_D(0,x) = \delta_D(0,x) = \rho(0,N_D(x))$ for any $x \in D$,
- (ii) $c_D(0, v) = \kappa_D(0, v) = N_D(v)$ for any $v \in E$.

Let D be a balanced pseudoconvex domain in a sequentially complete locally convex space E. Then we have the following proposition as the gauge N_D is plurisubharmonic on E.

PROPOSITION 2.2. If D is a balanced pseudoconvex domain in a sequentially complete locally convex space E, then

- (i) $K_D(0,x) = \delta_D(0,x) = \rho(0,N_D(x))$ for any $x \in D$,
- (ii) $\kappa_D(0, v) = N_D(v)$ for any $v \in E$.

Using the above proposition, we obtain the following generalization of part (i) of the Schwarz lemma to balanced pseudoconvex domains in sequentially complete locally convex spaces.

PROPOSITION 2.3. Let E_j be a sequentially complete locally convex space and let D_j be a balanced pseudoconvex domain in E_j for j = 1, 2. Let $f: D_1 \to D_2$ be a holomorphic mapping with f(0) = 0. Then

$$N_{D_2} \circ f(z) \leq N_{D_1}(z)$$
.

Proof. By Proposition 2.2 (i), we have

$$\rho(0, N_{D_1}(z)) = \delta_{D_1}(0, z) \ge \delta_{D_2}(0, f(z)) = \rho(0, N_{D_2} \circ f(z)).$$

Since $\rho(0,r)$ is strictly increasing for $0 \le r < 1$, we obtain this proposition

The following definition of a complex geodesic due to E. Vesentini [15, 16, 17].

DEFINITION 2.4. Let D be a domain in a sequentially complete locally convex space E endowed with a pseudodistance d_D . A holomorphic mapping $\varphi: \Delta \to D$ is said to be a complex d_D -geodesic for (x,y) if

$$d_D(x, y) = \rho(\xi, \eta)$$

for any points $\xi, \eta \in \Delta$ such that $\varphi(\xi) = x$ and $\varphi(\eta) = y$.

A holomorphic mapping $\varphi : \Delta \to D$ is said to be a complex c_D -geodesic for (z, v) if $c_D(z, v) = \gamma(\lambda)|\alpha|$ holds for any $\lambda \in \Delta$ and any $\alpha \in \mathbf{C}$ such that $\varphi(\lambda) = z$ and $\alpha \varphi'(\lambda) = v$.

A holomorphic mapping $\varphi : \Delta \to D$ is said to be a complex κ_D geodesic for (z, v) if $\kappa_D(z, v) = \gamma(\lambda)|\alpha|$ holds for any $\lambda \in \Delta$ and $\alpha \in \mathbb{C}$ such that $\varphi(\lambda) = z$ and $\alpha \varphi'(\lambda) = v$.

The following results about a complex geodesic are well-known (cf. S. Dineen [3], T. Franzoni and E. Vesentini [5], M. Hervé [9] etc).

PROPOSITION 2.5. Let D be a domain in a sequentially complete locally convex space E endowed with a pseudodistance d_D or a pseudometric μ_D . Then the following statements hold:

(i) a holomorphic mapping $\varphi: \Delta \to D$ is a complex d_D -geodesic for (x,y) if and only if there exists only one pair $(\xi,\eta) \in \Delta^2$ with $(\xi \neq \eta)$ such that $\varphi(\xi) = x$, $\varphi(\eta) = y$ and

$$d_D(x,y) = \rho(\xi,\eta),$$

(ii) a holomorphic mapping $\varphi: \Delta \to D$ is a complex μ_D -geodesic for (z,v) if and only if there exists only one point $\lambda \in \Delta$ such that $\varphi(\lambda) = z$, $\alpha \varphi'(\lambda) = v$ and

$$\mu_D(\varphi(\lambda), \varphi'(\lambda)) = |\alpha| \gamma(\lambda).$$

A point x of the closure \overline{D} of D is said to be a complex extreme point of \overline{D} if y=0 is the only vector in E such that the function $: \zeta \longmapsto x + \zeta y$ maps Δ into D. For example, C^2 -smooth strictly convex boundary points are complex extreme points.

For a bounded balanced pseudoconvex domain D, the holomorphic mapping $\varphi(\zeta) = \zeta a/N_D(a)$ is a complex δ_D -geodesic and κ_D -geodesic for (0,a) for any $a \in D$ with $N_D(a) > 0$. In fact, M. Hervé [9] has given the following characterization of the uniqueness of complex geodesics (see e.g. E. Vesentini [15], [16], [17]).

PROPOSITION 2.6. Let D be a balanced convex domain in a sequentially complete locally convex space E. Let $a \in D$ be such that $N_D(a) > 0$, and let $\varphi : \Delta \to D$ be the holomorphic mapping defined by $\varphi(\zeta) = \zeta a/N_D(a)$. Then the following conditions are equivalent:

- (i) the point $b = a/N_D(a)$ is a complex extreme point of \overline{D} ;
- (ii) φ is the unique (modulo Aut(Δ)) complex C_D -geodesic for (0, a);
- (iii) φ is the unique (modulo Aut(Δ)) complex K_D -geodesic for (0, a);
- (iv) φ is the unique (modulo Aut(Δ)) complex δ_D -geodesic for (0, a);
- (v) φ is the unique (modulo Aut(Δ)) complex c_D -geodesic for (0, a);
- (vi) φ is the unique (modulo Aut(Δ)) complex κ_D -geodesic for (0,a).

Using the uniqueness of complex geodesics, we obtain the linearity of complex geodesics as in the following proposition.

PROPOSITION 2.7. Let D_j be a bounded balanced convex domain in complex normed spaces E_j for j=1,2, and let $f:D_1 \to D_2$ be a holomorphic mapping with f(0)=0. Let $x \in D_1 \setminus \{0\}$ and let $\varphi(\zeta)=\zeta x/N_{D_1}(x)$. We assume that $f(x)/N_{D_2} \circ f(x)$ is a complex extreme point of $\overline{D_2}$. If one of the following conditions is satisfied, then $f \circ \varphi$ is a linear complex δ_{D_2} -geodesic.

- (i) $N_{D_2} \circ f(x) = N_{D_1}(x)$.
- (ii) $\delta_{D_2}(f(0), f(x)) = \delta_{D_1}(0, x)$.
- (iii) $K_{D_2}(f(0), f(x)) = K_{D_1}(0, x)$.
- (iv) $C_{D_2}(f(0), f(x)) = C_{D_1}(0, x)$.

Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv) are equivalent. Suppose that (i) is satisfied. By Proposition 2.1 (i),

$$\begin{array}{rcl} \delta_{D_2}(f\circ\varphi(0),f\circ\varphi\circ N_{D_1}(x)) & = & \delta_{D_2}(0,f(x)) \\ & = & \delta_{D_1}(0,x) \\ & = & \rho(0,N_{D_1}(x)). \end{array}$$

By Proposition 2.5 (i), $f \circ \varphi$ is a complex δ_{D_2} -geodesic for (0, f(x)). By Proposition 2.6, we have

$$f \circ \varphi(\zeta) = \zeta e^{i\theta} \frac{f(x)}{N_{D_2} \circ f(x)}$$

for some $\theta \in \mathbf{R}$.

3. Special versions of the Schwarz Lemma

Now we introduce the projective space $\mathbf{P}(E)$. Let E be a locally convex space. Let z and z' be points in $E \setminus \{0\}$. z and z' are said to be equivalent if there exists $\lambda \in \mathbf{C}^*$ such that $z = \lambda z'$. We denote by $\mathbf{P}(E)$ the quotient space of $E \setminus \{0\}$ by this equivalence relation. Then $\mathbf{P}(E)$ is a Hausdorff space. The Hausdorff space $\mathbf{P}(E)$ is called the *complex projective space induced by* E. We denote by Q the quotient map from $E \setminus \{0\}$ to $\mathbf{P}(E)$ (see M. Nishihara [14]).

THEOREM 3.8. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for j=1,2 and let $f:D_1 \to D_2$ be a holomorphic mapping with f(0)=0. Let X be a non-empty subset

of D_1 such that X is mapped homeomorphically onto an open subset Ω in the complex projective space $\mathbf{P}(E_1)$ by the quotient map Q from $E_1 \setminus \{0\}$ onto $\mathbf{P}(E_1)$. We assume that $f(x)/N_{D_2}(f(x))$ is a complex extreme point of $\overline{D_2}$ for any $x \in X$ and that there exists $w_0 \in X$ such that $w_0/N_{D_1}(w_0)$ is a complex extreme point of $\overline{D_1}$. If one of the following conditions is satisfied, then f is linear and injective.

- (i) $N_{D_2}(f(x)) = N_{D_1}(x)$ for any $x \in X$.
- (ii) $C_{D_2}(f(0), f(x)) = C_{D_1}(0, x)$ for any $x \in X$.
- (iii) $K_{D_2}(f(0), f(x)) = K_{D_1}(0, x)$ for any $x \in X$.
- (iv) $\delta_{D_2}(f(0), f(x)) = \delta_{D_1}(0, x)$ for any $x \in X$.

Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv) are equivalent. Suppose that (i) is satisfied. We take a point $w \in X \setminus \{0\}$ and set $\varphi(\zeta) = \zeta w/N_{D_1}(w)$ for $\zeta \in \Delta$. Then φ is a complex δ_{D_1} -geodesic. We have

$$\delta_{D_2}(f \circ \varphi(0), f \circ \varphi(N_{D_1}(w))) = \rho(0, N_{D_1}(w)).$$

By Proposition 2.7, $f \circ \varphi$ is a complex δ_{D_2} -geodesic. It follows from this that there exists a point $y \in D_2 \setminus \{0\}$ such that

(3.1)
$$f \circ \varphi(\zeta) = \zeta \frac{y}{N_{D_2}(y)}.$$

On the other hand, let $f(x) = \sum_{n=1}^{\infty} P_n(x)$ be the Taylor expansion of f by n-homogeneous polynomials P_n in a neighborhood V of 0 in E_1 . Then we have

(3.2)
$$f \circ \varphi(\zeta) = \sum_{n=1}^{\infty} P_n(\zeta \frac{w}{N_{D_1}(w)}) = \sum_{n=1}^{\infty} \left(\frac{\zeta}{N_{D_1}(w)}\right)^n P_n(w)$$

in a neighborhood of 0 in Δ . By (3.1) and (3.2), we obtain

$$P_n(w) = 0$$
 for $w \in X, n \ge 2$.

We take any point $y \in \mathbf{C}^*X = \{tx; t \in \mathbf{C}^*, x \in X\}$. Then there exist $t \in \mathbf{C}^*$ and $x \in X$ such that y = tx. Hence

$$P_n(y) = P_n(tx)$$

$$= t^n P_n(x)$$

$$= 0,$$

that is, $P_n \equiv 0$ on $\mathbb{C}^*X \subset E_1$ for every $n \geq 2$. Since Q is continuous, the set $\mathbb{C}^*X = Q^{-1}(\Omega)$ contains an open subset U of E. By the identity theorem,

$$P_n \equiv 0$$
 on E_1 for every $n \geq 2$.

Therefore $f = P_1$, that is, f is linear.

Next we show that f is injective. Let z be a point of E_1 with f(z) = 0. Since f is linear, we have

$$N_{D_2} \circ f(tx) = N_{D_2}(tf(x))$$

= $|t|N_{D_2} \circ f(x)$
= $|t|N_{D_1}(x)$
= $N_{D_1}(tx)$

for every $t \in \mathbb{C}^*$, $x \in X$. It follows from this that

$$N_{D_2} \circ f(y) = N_{D_1}(y)$$
 for all $y \in \mathbf{C}^* X$.

Since \mathbf{C}^*X is open, there exists a positive number r>0 such that $w_0+\zeta z\in \mathbf{C}^*X$ for $\zeta\in \mathbf{C}, |\zeta|< r$. Then we have

(3.3)
$$N_{D_2} \circ f(w_0 + \zeta z) = N_{D_1}(w_0 + \zeta z).$$

On the other hand,

$$N_{D_2} \circ f(w_0 + \zeta z) = N_{D_2}(f(w_0) + \zeta f(z))$$

$$= N_{D_2} \circ f(w_0)$$

$$= N_{D_1}(w_0).$$

By (3.3) and (3.4), we have

$$N_{D_1}(w_0 + \zeta z) = N_{D_1}(w_0).$$

Hence

$$N_{D_1} \left(\frac{w_0}{N_{D_1}(w_0)} + \frac{\zeta}{N_{D_1}(w_0)} z \right) = 1 \quad \text{for } |\zeta| < r.$$

Since $w_0/N_{D_1}(w_0)$ is a complex extreme point of $\overline{D_1}$, we have

$$z = 0.$$

Therefore f is injective.

Since complex Hilbert spaces are endowed with the norm which is induced from its inner products, we have the following corollary.

COROLLARY 3.9. Let H_j be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle_j$, let B_j be the open unit ball of H_j for the norm $\|\cdot\|_j = \langle \cdot, \cdot \rangle_j^{\frac{1}{2}}$ for j=1,2. Let $f:B_1 \to B_2$ be a holomorphic map with f(0)=0. Let X be a non-empty subset of B_1 such that X is mapped onto an open subset Ω in the projective space $\mathbf{P}(H_1)$ by the quotient map Q. If $\|w\|_1 = \|f(w)\|_2$ holds for every $w \in X$, then f is a linear isometry.

If $H_1 = H_2 = \mathbb{C}^n$ with the Euclidean unit ball B, then f is a linear automorphism of B.

Proof. Since every point of the boundary $\partial B_j = \{z \in H_j; ||z||_j - 1 = 0\}$ of B_j is a complex extreme point of the closure \bar{B}_j of B_j for j = 1, 2, by Theorem 3.8, f is linear and injective.

We consider a function

$$g(z) = ||z||_1^2 - ||f(z)||_2^2$$

for $z \in H_1$. By Proposition 2.3, we have $g \ge 0$ on H_1 .

Since $\partial \overline{\partial} g \geq 0$, the non-negative valued function g is plurisubharmonic on H_1 . Hence $\log g$ is plurisubharmonic on H_1 . Since $||w||_1 = ||f(w)||_2$ for every $w \in X$,

$$\log g \equiv -\infty$$

on an open subset $\mathbb{C}^*X = Q^{-1}(\Omega)$. Therefore f is a linear isometry. \square

4. Infinitesimal pseudometrics

Proposition 4.10. Let D_j be a bounded balanced convex domain in a complex normed space E_j for j=1,2, and let $f:D_1 \to D_2$ be a holomorphic mapping with f(0)=0. Let $x \in D \setminus \{0\}$ and let $\varphi(\zeta)=\zeta x/N_{D_1}(x)$. We assume that $df(0)x/N_{D_2}(df(0)x)$ is a complex extreme point of $\overline{D_2}$. If one of the following conditions is satisfied, then $f \circ \varphi$ is a linear complex κ_{D_2} -geodesic.

- (i) $N_{D_2} \circ f(x) = N_{D_1}(x)$.
- (ii) $c_{D_2}(f(0), f(x)) = c_{D_1}(0, x)$.
- (iii) $\kappa_{D_2}(f(0), f(x)) = \kappa_{D_1}(0, x)$.

Proof. By Proposition 2.1 (ii),

$$\kappa_{D_2}(0, df(0)x) = \kappa_{D_1}(0, x)$$

$$= N_{D_1}(x).$$

Since $N_{D_1}(x)(f \circ \varphi)'(0) = df(0)x$, $f \circ \varphi$ is a complex κ_{D_2} -geodesic for (0, df(0)x). By Proposition 2.6, we have

$$f \circ \varphi(\zeta) = \zeta e^{i\theta} \frac{df(0)x}{N_{D_2}(df(0)x)}$$

for some $\theta \in \mathbf{R}$.

THEOREM 4.11. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for j=1,2, and let $f:D_1\to D_2$ be a holomorphic mapping. Let V be a connected open neighborhood of the origin in D_1 . We assume that $\kappa_{D_2}(0,df(0)x)=\kappa_{D_1}(0,x)$ for $x\in V$. If f(0)=0 and $df(0)x/N_{D_2}(df(0)x)$ is a complex extreme point of $\overline{D_2}$ for any $x\in V\setminus\{0\}$, and if there exists $w\in V\setminus\{0\}$ such that $w/N_{D_1}(w)$ is a complex extreme point of $\overline{D_1}$, then f is linear and injective.

Proof. Let $f(z) = \sum_{n=1}^{\infty} P_n(z)$ be the expansion of f by n-homogeneous polynomials P_n in a neighborhood of 0 in E_1 . Since $\kappa_{D_2}(f(0), df(0)v) = \kappa_{D_1}(0, v)$ for any $v \in V$, by Proposition 4.10, $f(\zeta x/N_{D_1}(x))$ is the restriction of a linear map for any $x \in V$. Then we have

$$P_n(x) = 0$$
 on V for $n \ge 2$

as in the proof of Theorem 3.8. By the analytic continuation theorem, we have P_n is identically 0 for $n \ge 2$. Therefore f is the restriction of a linear map.

Let $\varphi(\zeta) = \zeta w/N_{D_1}(w)$. By Proposition 2.6, $f \circ \varphi$ is a complex δ_{D_2} -geodesic for (0, f(v)). By Proposition 2.1,

$$\rho(0, N_{D_2}(f(v))) = \delta_{D_2}(0, f(v)) = \rho(0, N_{D_1}(v)).$$

This implies that $N_{D_2}(f(v)) = N_{D_1}(v)$. The rest of the proof is same as Theorem 3.8.

We note that the map f is not necessarily a linear isometry under the assumption of the above theorem (cf. J. P. Vigué [18]). The following theorem was obtained by H.Cartan for bounded domain in \mathbb{C}^2 (see T. Franzoni and E. Vesentini [5] etc).

THEOREM 4.12. Let D be a bounded domain in a complex normed space E, and let $f: D \to D$ be a holomorphic mapping. If there exists $x_0 \in D$ such that $f(x_0) = x_0$ and $df(x_0)$ is an identity, f is the identity map.

Using the above theorem of Cartan, we obtain the following theorem.

THEOREM 4.13. Let E_j be a complex normed space, let D_j be a bounded balanced convex domain in E_j for j=1,2, and let $f:D_1 \to D_2$ be a holomorphic mapping. Let V be a connected open neighborhood of the origin in D_1 . We assume that $\kappa_{D_2}(0, df(0)x) = \kappa_{D_1}(0, x)$ for $x \in V$. If the inverse $df(0)^{-1}$ exists, then f(0) = 0 and f is the restriction of df(0) to D_1 .

Proof. First we will show f(0) = 0. We assume that $a = f(0) \neq 0$. Since $a \in D$, there exists a point $v \in E_1$ such that $N_{D_1}(v) = 1$ and $df(0)v = a/N_{D_2}(a)$. Then we have

$$\kappa_{D_2}(a, a/N_{D_2}(a)) = \kappa_{D_2}(f(0), df(0)v)$$

$$\leq \kappa_{D_1}(0, v)$$

$$= N_{D_1}(v)$$

$$= 1.$$

Therefore

On the other hand, we set $\varphi(\zeta) = \zeta a/N_{D_2}(a)$ for $\zeta \in \Delta$. Then φ is a complex κ_{D_2} -geodesic for (0, a). So we have

$$\kappa_{D_2}(a, a) = \kappa_{D_2}(\varphi(N_{D_2}(a)), N_{D_2}(a)\varphi'(N_{D_2}(a)))$$

$$= \kappa_{\Delta}(N_{D_2}(a), N_{D_2}(a))$$

$$= \frac{N_{D_2}(a)}{1 - \{N_{D_2}(a)\}^2}.$$

Therefore $\kappa_{D_2}(a,a) > N_{D_2}(a)$. This contradicts with (4.1). We obtain f(0) = 0.

By the assumptions, we have $N_{D_1}(df(0)^{-1}(w)) < 1$ for $w \in D_2$. Now we consider a holomorphic mapping $g = df(0)^{-1} \circ f$. Then g is a holomorphic mapping from D_1 to D_1 such that g(0) = 0 and dg(0) is identity. By Theorem 4.12, g is identity.

In the Hilbert space case, since every boundary point of the unit ball is a complex extreme point, by the proofs of Corollary 3.9, Theorem 4.11 and Theorem 4.13, we obtain the following corollary.

COROLLARY 4.14. Let H_j be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle_j$, let B_j be the open unit ball of H_j for the norm $\|\cdot\|_j = \langle \cdot, \cdot \rangle_j^{\frac{1}{2}}$ for j=1,2. Let $f:B_1 \to B_2$ be a holomorphic map. Let V be a connected open neighborhood of the origin in B_1 . We assume that $\kappa_{B_2}(0, df(0)x) = \kappa_{B_1}(0, x)$ for $x \in V$. Then f(0) = 0 and f is a linear isometry.

If $H_1 = H_2 = \mathbb{C}^n$ with the Euclidean unit ball B, then f is a linear automorphism of B.

References

- [1] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249-256.
- [2] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin,
- [3] _____, The Schwarz Lemma, Oxford mathematical monographs, 1989.
- [4] S. Dineen, R. M. Timoney and J. P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa 12 (1985), 515–529.
- [5] T. Franzoni and E. Vesentini, *Holomorphic maps and invariant distances*, North-Holland Math. Studies 40, 1980.
- [6] H. Hamada, A Schwarz lemma on complex ellipsoids, Ann. Polon. Math. 67 (1997), 269–275.
- [7] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy, Ed. J.A.Barroso, North-Holland Math. Studies 34 (1979), 345–406.
- [8] H. Hamada and T. Honda, A characterization of Linear Automorphisms on the Euclidean Ball, Ann. Polon. Math. 72 (1999), 79–85.
- [9] M. Hervé, Analyticity in Infinite Dimensional Space, Walter de Gruyter, 1989.
- [10] T. Honda, A special version of the Schwarz lemma on an infinite dimensional domain, Rend. Mat. Acc. Lincei 9 (1997), no. 8, 107-110.
- [11] ______, Linear Isometries on Hilbert Spaces, Complex Variables Theory Appl. 38 (1999), 193–200.
- [12] _____, The growth theorem and Schwarz lemma on infinite dimensional domains, Math. Nachr. 233-234 (2002), 129-139.
- [13] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, de Gruyter, Berlin-New York, 1993.
- [14] M. Nishihara, On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces, Portugaliae Math. 52 (1995), 61–94.
- [15] E. Vesentini, Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa 7 (1979), no. 4, 39–68.
- [16] _____, Complex geodesics, Compositio Math. 44 (1981), 375–394.
- [17] _____, Complex geodesics and holomorphic maps, Sympos. Math. 26 (1982), 211-230.
- [18] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304.
- [19] _____, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241–249.

Ariake National College of Technology,

Omuta, Fukuoka, 836-8585, Japan

E-mail: honda@ariake-nct.ac.jp