J. Korean Math. Soc. 41 (2004), No. 1, pp. 145-156

HOLOMORPHIC MAPPINGS INTO SOME
DOMAIN IN A COMPLEX NORMED SPACE

TATSUHIRO HONDA

ABSTRACT. Let D;, Ds be convex domains in complex normed spa-
ces E1, E> respectively. When a mapping f : D; — Dy is holomor-
phic with f(0) = 0, we obtain some results like the Schwarz lemma.
Furthermore, we discuss a condition whereby f is linear or injective
or isometry.

1. Introduction

Let A = {z € C;|z| < 1} be the unit disc in C. The classical Schwarz
lemma in one complex variable is as follows:

THE CLASSICAL SCHWARZ LEMMA. Let f : A — A be a holomorphic
mapping with f(0) = 0. Then the following statements hold:

(i) 1f(2)] < |z| for any z € A,

(ii) if there exists zg € A\{0} such that |f(z0)| = |20, or if | f'(0)] = 1,
then there exists a complex number A of modulus 1 such that f(z) = Az
and f is an automorphism of A.

It is natural to consider an extension of the above results to more
general domains or higher dimensional spaces. However, condition (ii)
in above no longer holds even for the bidisc A x A. In fact, one can
easily construct a holomorphic mapping f : A x A — A x A such that
f(0) =0and ||f(2)|| = ||2]| for z in an open subset of A x A, but f is not
an isometry (cf. J. P. Vigué [18]). Nevertheless, E. Vesentini [15], [16]
showed that if || f(w)|| = ||w|| holds on B; and if every boundary point of
the unit ball B; is a complex extreme point, then f : By — B» is a linear
isometry, where B;, By are the open unit balls in normed spaces E;, Fs
over C respectively. J. P. Vigué [18], [19] proved that if every boundary
point of the unit ball B for some norm in C” is a complex extreme
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point of B and if ||f(w)| = ||w|| holds on an open subset U of B, then
f: B — B is a linear automorphism of C". H. Hamada [6] generalized
the above classical Schwarz lemma to the case where || f(w)| = ||wl|
holds on some local complex submanifold of codimension 1. The author
[10], [11] generalized to the case where || f(w)|| = ||w|| holds on a non-
pluripolar subset. H. Hamada and the author [8] generalized to the case
where ||f(w)| = ||w]| holds on a totally real submanifold.

In this paper, we consider some condition whereby a holomorphic
mapping is linear or injective or isometric.

2. Notation and preliminaries

All topologies considered throughout this paper shall be Hausdorff.
A vector space E over C is said to be locally convex if E is equipped
with the Hausdorff topology defined by some family II of seminorms such
that sup,cma(z) > 0 for all x € F'\ {0}, that is, a fundamental system
of neighborhoods of z in this topology is made up of finite intersections
of sets r + a1([0,a]), @ € II, 0 < @ < oc. Then all seminorms in
IT are continuous, but the family cs(E) of all continuous semi-norm on
E is generally larger than II. A sequence {z,},en on a locally convex
space F is a Cauchy sequence in F if for each a € II and each ¢ > 0,
there exists ng € N such that a(z, — zn) < € for all m,n > ng. A
locally convex space E is said to be sequentially complete if any Cauchy
sequence converges.

Let F' be a locally convex space, let E be a sequentially complete
locally convex space. Let U be an open subset in F, andlet f : U — FE
be a holomorphic mapping. For a € U, there uniquely exists a sequence
of n-homogeneous polynomials P, : F' — E such that the expansion

fla+2z)=fla)+ Y Pul2)
n=1

holds for all z in the largest balanced subset of U — a. This series is
called the Taylor expansion of f by n-homogeneous polynomials P, at a.

Let A = {2z € C;|z| < 1} be the unit disc in the complex plane C,
and let y(\) = 1/(1 —|A|?). The Poincaré distance p on A is defined for
z,w € A as follows:

. 1o 14 (2 —w)/(1 = 2w)|
A = 318 T ) — )l
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Let D be a domain in a sequentially complete locally convex space E.
The gauge Np of D is defined for z € E as follows:

Np(z) = inf{a > 0; 2z € aD}.

The Carathéodory pseudodistance Cp on D is defined for p,q € D as
follows:

Cp(p,q) = sup{p(f(p), f(9)); f € H(D,A)}.
The Lempert function dp of D is defined for p,q € D as follows:

6p(p,q) = inf{p(&,m);&n € A3 peH(A,D)
such that ¢(§) = p,o(n) = q}.

The Kobayashi pseudodistance Kp on D is defined for p,q € D as
follows:

Kp(p,q) = inf {z op(zk, zet1)im €Ny {p = 21,22, ..., Tm41 = q} C D} :
k=1

Then we have established between the various pseudodistances on a
domain D:
Cp<Kp<éponDxD.

The infinitesimal Carathéodory pseudometric c¢p for D is defined for

ze€ D, v € FE as follows:
cp(z,v) = sup{|dy(2)(v)[; ¥ € H(D, A)}.

The infinitesimal Kobayashi pseudometric xp for D is defined for
z € D, v € E as follows:
(21)  kp(z,v) = if{y(Mlal; *p € H(A, D), A e A

such that p()) = z,a¢p’(A\) = v}.

Then holomorphic mappings ¢ € H(A, D) as in (2.1) certainly exist.
In fact, if R is the radius of the open disc {\ € C; v € U(z)}, where
U(z) is a neighborhood of z, we may take the mapping

(A =z+ év
¢
for [¢| > 1/R. Hence kp(z,v) < 1/R.
Moreover, for any ¢ € H(D, A) with ¢¥(2) = 0, we have (1) o ¢)'(0) =
di(2)(¢’(0)). It follows from this that

ecp<kponDxE.

We use convexity to obtain the relationship among the pseudodis-
tances or pseudometrics (S. Dineen [3], T. Franzoni and E. Vesentini [5],
M. Hervé [9] etc).
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PROPOSITION 2.1. If D is a balanced convex domain in a sequentially
complete locally convex space E, then

(i) Cp(0,z) = Kp(0,z) = 6p(0,z) = p(0, Np(x)) for any z € D,

(ii) ep(0,v) = kp(0,v) = Np(v) for any v € E.

Let D be a balanced pseudoconvex domain in a sequentially complete
locally convex space E. Then we have the following proposition as the
gauge Np is plurisubharmonic on E.

ProposITION 2.2. If D is a balanced pseudoconvex domain in a
sequentially complete locally convex space E, then

(i) Kp(0,z) = 6p(0,z) = p(0, Np(z)) for any z € D,

(ii) kp(0,v) = Np(v) for any v € E.

Using the above proposition, we obtain the following generalization

of part (i) of the Schwarz lemma to balanced pseudoconvex domains in
sequentially complete locally convex spaces.

PROPOSITION 2.3. Let E; be a sequentially complete locally convex
space and let D; be a balanced pseudoconvex domain in E; for j = 1,2.
Let f: Dy — Dj be a holomorphic mapping with f(0) = 0. Then

Np, o f(z) < Np, (2).
Proof. By Proposition 2.2 (i), we have
p(0, Np, (2)) = 6p,(0,2) > ép,(0, f(2)) = p(0, Np, o f(2)).
Since p(0, ) is strictly increasing for 0 < r < 1, we obtain this proposi-

tion. O

The following definition of a complex geodesic due to E. Vesentini
[15, 16, 17)].

DEFINITION 2.4. Let D be a domain in a sequentially complete lo-
cally convex space E endowed with a pseudodistance dp. A holomorphic
mapping ¢ : A — D is said to be a complex dp-geodesic for (x,y) if

dp(z,y) = pl&,n)

for any points £, € A such that ¢(£) = x and ¢p(n) = y.

A holomorphic mapping ¢ : A — D is said to be a complex cp-
geodesic for (z,v) if ep(z,v) = v(N\)|a| holds for any A € A and any
a € C such that p(A) = z and ay'(N) = v.



Holomorphic mappings into some domain in a complex normed space 149

A holomorphic mapping ¢ : A — D is said to be a compler kp-
geodesic for (z,v) if kp(z,v) =~(\)|a| holds for any A € A and @ € C
such that ¢(\) = z and ay'(\) = v.

The following results about a complex geodesic are well-known (cf.
S. Dineen (3], T. Franzoni and E. Vesentini [5], M. Hervé [9] etc).

PROPOSITION 2.5. Let D be a domain in a sequentially complete
locally convex space E endowed with a pseudodistance dp or a pseudo-
metric up. Then the following statements hold:

(i) a holomorphic mapping ¢ : A — D is a complex dp-geodesic for
(z,y) if and only if there exists only one pair (£,n) € A? with
(€ #m) such that p(£) = z, p(n) =y and

dp(z,y) = p(&,n),

(ii) a holomorphic mapping ¢ : A — D is a complex pup-geodesic for
(z,v) if and only if there exists only one point A € A such that
o(A) =z, a’(X) = v and

1p(p(A), @' (X)) = laly(A).

A point z of the closure D of D is said to be a complez extreme
point of D if y = 0 is the only vector in F such that the function
: ( — 2 + (y maps A into D. For example, C?-smooth strictly convex
boundary points are complex extreme points.

For a bounded balanced pseudoconvex domain D, the holomorphic
mapping ¢(¢) = (a/Np(a) is a complex dp-geodesic and xp-geodesic
for (0, a) for any a € D with Np(a) > 0. In fact, M. Hervé [9] has given
the following characterization of the uniqueness of complex geodesics
(see e.g. E. Vesentini [15], [16], [17]).

PROPOSITION 2.6. Let D be a balanced convex domain in a se-
quentially complete locally convex space E. Let a € D be such that
Np(a) >0, and let ¢ : A — D be the holomorphic mapping defined by
©(¢) = Ca/Np(a). Then the following conditions are equivalent :

(i) the point b = a/Np(a) is a complex extreme point of D;

(ii) ¢ is the unique (modulo Aut(A)) complex Cp-geodesic for (0, a);

(iii) o is the unique (modulo Aut(A)) complex K p-geodesic for (0, a);

(iv)  is the unique (modulo Aut(A)) complex é p—geodesic for (0, a);

(v) » is the unique (modulo Aut(A)) complex cp-geodesic for (0, a);

(vi) @ is the unique (modulo Aut(A)) complex kp-geodesic for (0, a).
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Using the uniqueness of complex geodesics, we obtain the linearity of
complex geodesics as in the following proposition.

PROPOSITION 2.7. Let D; be a bounded balanced convex domain
in complex normed spaces E; for j = 1,2, and let f : D1 — D2 be a
holomorphic mapping with f(0) = 0. Let x € D; \ {0} and let ¢(¢) =
Cz/Np,(z). We assume that f(z)/Np,o f(x) is a complex extreme point
of Dy. If one of the following conditions is satisfied, then f o is a linear
complex 6p,-geodesic.
(i) Np, o f(z) = Np, (z).
(11) 6D2 (f(0)7 f(SE)) = 5D1 (07 J))
(iii) KDz(f(O)’ f(:c)) = KD1(0"’L‘)'
(iV) Cp, (f(o)a f(:lt)) =Cp, (0,z).
Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv)
are equivalent. Suppose that (i) is satisfied. By Proposition 2.1 (i),
6p,(f 0 ¢(0),fopoNp,(z)) = 6p,(0,f(z))
= 6p,(0,7)
= p(ov ND1 (:C))

By Proposition 2.5 (i), f o ¢ is a complex ép,-geodesic for (0, f(z)). By
Proposition 2.6, we have
f(=)

o _ 0
fow(()={e Np, o f(2)
for some 0 € R. 3

3. Special versions of the Schwarz Lemma

Now we introduce the projective space P(E). Let E be a locally
convex space. Let 2z and 2’ be points in F \ {0}. 2 and 2’ are said to be
equivalent if there exists A € C* such that z = A2z’. We denote by P(E)
the quotient space of E \ {0} by this equivalence relation. Then P(FE)
is a Hausdorff space. The Hausdorff space P(E) is called the complex
projective space induced by E. We denote by @ the quotient map from
E\ {0} to P(E) (see M. Nishihara [14]).

THEOREM 3.8. Let E; be a complex normed space, let D; be a
bounded balanced convex domain in Ej for j = 1,2 and let f : D1 — Dy
be a holomorphic mapping with f(0) = 0. Let X be a non-empty subset
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of Dy such that X is mapped homeomorphically onto an open subset
() in the complex projective space P(E1) by the quotient map @ from
E1 \ {0} onto P(Ey). We assume that f(z)/Np,(f(z)) is a complex
extreme point of Dy for any z € X and that there exists wy € X
such that wo/Np, (wo) is a complex extreme point of D;. If one of the
following conditions is satisfied, then f is linear and injective.

(i) Np,(f(z)) = Np, (z) for any z € X.

(ii) Cp,(f(0), f(z)) = Cp,(0,z) for any z € X.

(iii) Kp,(f(0), f(z)) = Kp,(0,z) for any z € X.

(iv) 3p5(f(0), f(2)) = 6p, (0,2) for any @ € X.

Proof. By Proposition 2.1 (i), the conditions (i), (ii), (iii) and (iv) are
equivalent. Suppose that (i) is satisfied. We take a point w € X\ {0} and

set ¢(¢) = (w/Np,(w) for { € A. Then ¢ is a complex &p,-geodesic.
We have

6D, (f ©#(0), f 0 @(Np, (w))) = p(0, Np, (w)).
By Proposition 2.7, f oy is a complex dp,-geodesic. It follows from this
that there exists a point y € Dy \ {0} such that

(3.1) fowld)=(xrs

o0
On the other hand, let f(z) = 3  Py(z) be the Taylor expansion of
n=1

f by n-homogeneous polynomials }3” in a neighborhood V of 0 in Ej.
Then we have

32 1000 = 2Pl =2 () P

n=1
in a neighborhood of 0 in A. By (3.1) and (3.2), we obtain
Py(w)=0 forwe X,n>2.
We take any point y € C*X = {tz;t € C*,z € X}. Then there exist
t € C* and x € X such that y = tz. Hence
Pn(y) = Pn(tx)

= t"P,(z)

= 0,
that is, P, = 0 on C*X C E; for every n > 2. Since () is continuous,
the set C*X = Q~1(Q) contains an open subset U of E. By the identity

theorem,
P,=0 on E; for every n > 2.
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Therefore f = Py, that is, f is linear.
Next we show that f is injective. Let z be a point of E; with f(z) = 0.
Since f is linear, we have

Np, o f(tz) = Np,(tf(z))
= [t|{Np, o f(x)
= [t|Np,(z)
= Np,(tzx)
for every t € C*,z € X. It follows from this that
Np, o f(y) = Np,(y) forall y e C*X.

Since C*X is open, there exists a positive number r > 0 such that
wg + ¢z € C*X for ¢ € C,|(| < r. Then we have

(3.3) Np, o f(wo + (z) = Np,(wo + (2).
On the other hand,
Np, o f(wo+C¢z) = Np,(f(wo)+(f(2))
= Np, o fwo)
(3.4) = Np,(wo).
By (3.3) and (3.4), we have
Np, (wg +(z) = Np, (wo).

Hence

wo ¢
N + z) =1 for|¢| <.
2 (NDl(wo) Np, (wo) Kl
Since wo/Np, (wp) is a complex extreme point of Dy, we have
z=0.
Therefore f is injective. O

Since complex Hilbert spaces are endowed with the norm which is
induced from its inner products, we have the following corollary.

COROLLARY 3.9. Let H; be a complex Hilbert space with the inner
product < -,- >;, let B; be the open unit ball of H; for the norm
1

Il =<-- >? for j = 1,2. Let f : By — Bs be a holomorphic map
with f(0) = 0. Let X be a non-empty subset of B; such that X is
mapped onto an open subset Q in the projective space P(Hi) by the
quotient map Q. If |w|l; = || f(w)]l2 holds for every w € X, then f is a
linear isometry.
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If Hy = Hy = C" with the Euclidean unit ball B, then f is a linear
automorphism of B.

Proof. Since every point of the boundary 0B; = {z € Hj; ||2||; - 1 =
0} of B; is a complex extreme point of the closure B; of Bj for j =1,2,
by Theorem 3.8, f is linear and injective.

‘We consider a function

g(2) = llll = I£(2)113

for z € H;. By Proposition 2.3, we have g > 0 on Hj.

Since 8dg > 0, the non-negative valued function g is plurisubhar-
monic on H;. Hence logg is plurisubharmonic on H;. Since ||w||; =
| f(w)||2 for every w € X,

logg = —©

on an open subset C*X = Q~1(Q). Therefore f is a linear isometry. O

4. Infinitesimal pseudometrics

ProrosiTiON 4.10. Let D; be a bounded balanced convex domain
in a complex normed space E; for j = 1,2, and let f : Dy — Do
be a holomorphic mapping with f(0) = 0. Let z € D\ {0} and let
©(¢) = ¢z/Np,(z). We assume that df (0)z/Np,(df(0)z) is a complex
extreme point of Do. If one of the following conditions is satisfied, then
f o is a linear coniplex kp,-geodesic.

(i) Np, o f(z) = Np, (z).

(i) cp,(£(0), f(2)) = e, (0, ).

(iil) kp, (f(0), f(z)) = KD (0) z).

Proof. By Proposition 2.1 (ii),
HD2(0,df(0)x) = /ﬁDl(wa)
= ]\fD1 (iL‘)

Since Np, (z)(f o) (0) = df(0)z, f o is a complex p,-geodesic for
(0,df (0)z). By Proposition 2.6, we have

o _ 0 YO0z
Fo el = @ @)

for some 8 € R. O
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THEOREM 4.11. Let E; be a complex normed space, let D; be a
bounded balanced convex domain in Ej for j = 1,2, and let f : Dy — Ds
be a holomorphic mapping. Let V be a connected open neighborhood of
the origin in D,. We assume that £p,(0,df(0)z) = kp,(0,z) forz € V.
If f(0) = 0 and df (0)x/Np,(df (0)z) is a complex extreme point of Dy
for any z € V' \ {0}, and if there exists w € V' \ {0} such that w/Np, (w)
is a complex extreme point of D1, then f is linear and injective.

Proof. Let f(z) =Y oo Pn(2) be the expansion of f by n-homogene-
ous polynomials P, in a neighborhood of 0 in Ej. Since kp,{f(0), df (0)v)
= kp,(0,v) for any v € V, by Proposition 4.10, f((z/Np,(z)) is the
restriction of a linear map for any € V. Then we have

P,(z)=0 onVforn>2

as in the proof of Theorem 3.8. By the analytic continuation theorem,
we have P, is identically 0 for n > 2. Therefore f is the restriction of a
linear map.

Let ¢(¢) = ¢w/Np,(w). By Proposition 2.6, f o ¢ is a complex
dp,-geodesic for (0, f(v)). By Proposition 2.1,

p(O, NDQ(f(’U))) = 5D2(0a f(’U)) = p(O»ND1 ('U))

This implies that Np,(f(v)) = Np,(v). The rest of the proof is same as
Theorem 3.8. O

We note that the map f is not necessarily a linear isometry under the
assumption of the above theorem (cf. J. P. Vigué [18]). The following
theorem was obtained by H.Cartan for bounded domain in C? (see T.
Franzoni and E. Vesentini [5] etc).

THEOREM 4.12. Let D be a bounded domain in a complex normed
space E, and let f : D — D be a holomorphic mapping. If there exists
xo € D such that f(zo) = zo and df (zo) is an identity, f is the identity
map.

Using the above theorem of Cartan, we obtain the following theorem.

THEOREM 4.13. Let E; be a complex normed space, let D; be a
bounded balanced convex domain in E; for j = 1,2, and let f : D1 — Dy
be a holomorphic mapping. Let V' be a connected open neighborhood of
the origin in D,. We assume that xp,(0,df(0)x) = kp,(0,z) forz € V.
If the inverse df(0)~! exists, then f(0) = O and f is the restriction of
df (0) to Dl.
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Proof. First we will show f(0) = 0. We assume that a = f(0) # 0.
Since a € D, there exists a point v € E; such that Np,(v) = 1 and
df(0)v = a/Np,(a). Then we have

KD, (av a/NDz (a)) = KD, (f(o)a df(O)’U)

< KD (07 U)
= Np, (U)
= 1.
Therefore
(4.1) kp,(a,a) < Np,(a).

On the other hand, we set ¢(¢) = (a/Np,(a) for ( € A. Then ¢ is a
complex xp,-geodesic for (0,a). So we have

kpy(a,a) = Kp,(¢(Np,(a)), Np,(a)¢'(Np,(a)))
= ka(Np,(a), Np,(a))

. Np,(a) o

1—={Np,(a)}*

Therefore kp,(a,a) > Np,(a). This contradicts with (4.1). We obtain
f(0)=0.

By the assumptions, we have Np,(df(0)~}(w)) < 1 for w € Ds.
Now we consider a holomorphic mapping g = df(0)~* o f. Then g is a
holomorphic mapping from D; to D; such that ¢{0) = 0 and dg(0) is
identity. By Theorem 4.12, g is identity. O

In the Hilbert space case, since every boundary point of the unit ball
is a complex extreme point, by the proofs of Corollary 3.9, Theorem 4.11
and Theorem 4.13, we obtain the following corollary.

COROLLARY 4.14. Let H; be a complex Hilbert space with the inner

product < -,- >;, let B; be the open unit ball of H; for the norm
1

|- llj =<+ >? for j = 1,2. Let f: By — Bz be a holomorphic map.

Let V be a connected open neighborhood of the origin in B;. We assume

that kp,(0,df (0)z) = kp,(0,z) for x € V. Then f(0) =0 and f is a
linear isometry.

If Hy = Hs = C™ with the Euclidean unit ball B, then f is a linear
automorphism of B.
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