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ZEROS OF REAL POLYNOMIALS
ON BANACH SPACES

Jost G. LLAVONA

ABsTRACT. This paper is an expository presentation of a large part
of the results, about zeros of real polynomials on Banach spaces,
that have been obtained in recent years. Also new results, for or-
thogonally additive polynomials on L, spaces, are given.

1. Introduction

The study of the zeros of a complex polynomial has a long history,
with results coming via complex analysis, algebraic geometry, and func-
tional analysis. (See, e.g. [10], [11], [16]). Similar studies for real poly-
nomials are somewhat less common. In this paper we survey a large part
of the results on zeros of real polynomials that have been obtained in re-
cent years. If P and P, are k-homogeneous polynomials and {P,} — P
pointwise or uniformly on bounded sets, what about the convergence of
the zero sets Z(P,)? Section 1 is dedicated to this problem. We give
results and examples to show the diference between the complex and the
real case.

If P is a homogeneous polynomial, what about the dimension of sub-
spaces included in Z(P) = P~1(0)? Section 2 deals with this question.
Specifically treated is the case where the real Banach space does not
admit a positive definite 2-homogeneous polynomial.

Finally section 3 is devoted to approximation by zeros of orthogonally
additive polynomials on real /, and L, spaces. Results about the number
of zeros that are involved in the decomposition of each e; in [, or each
characteristic function in L,[0, 1] are given.

Throughout, X will be a Banach space over K (R or C). P(*X) will
denote the Banach space of k-homogeneous continuous polynomials on
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X under the norm:
| Pl=Sup{| P(z)|:z € X,| = ||I< 1}

(see [6], [14] for a general reference on polynomials on Banach spaces).
We will denote the closure of a set A in a topological space by cl(A).

Section 1

DEFINITION 1.1. ([7]). We say that a sequence of nonempty closed
subsets of a Banach space X, {A,}, converges in the Mosco sense to

a closed subset A, [(An M, A) for short |, whenever the following two
conditions hold:

(i) for every = € A there exists a sequence {z,}, norm convergent to
z, such that z, € A, for every n,

(ii) given J C Z cofinal, for every sequence {2y, }jc; weakly conver-
gent to z, the condition z,,; € A,; for every j, implies 2z € A.

-Kuratowski convergence is defined in the same way changing weak
convergence by norm convergence in (ii).

Notation: A, —— 4

Condition (i) is equivalent to A C L; A, and (ii), in Kuratowski
convergence, is equivalent to LA, C A.

Recall that z € L; A, & 3(z,) 1z = liTana:n and z, € A, Vn €N,

and that x € L;A, < 3(z,), k1 < k2 < --- such that z = limzy, and
Tk, € Akn; Vn € N,

-We say that a sequence of nonempty closed subsets of a Banach
space X, {An}, converges in strong (respectively, Wijsman) sense to a
closed set A, provided that the sequence {\,} converges to A uniformly
(respectively, pointwise) on bounded sets, where A\, and X are defined as:

Az) = d(z, A), \(z) =d(z, Ay).

Notation: A, —— A, A, ~% A.

REMARK 1.1. Mosco convergence implies Kuratowski convergence. If
X is a Schur space both convergences agree. If X is a finite dimensional
Banach space then M, K, W and r-convergence agree. W -convergence is
weaker than r-convergence but stronger than K -convergence ([4]).

It is assumed usually that the sets in the definition of Mosco con-
vergence are convex, and consequently weakly closed. We do not, but
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let us observe that without that condition a constant sequence may be
non-convergent.

In [5] it is proved that if X is a Banach space then r-convergence is
equivalent to the following condition: Vr > 0, Ve > 0, there exists ng
such that: (i) A+rB C A, +¢B, (i) A, +rB C A+¢B, Vn > ny,
where B is the unit ball of the Banach space.

Given P € P(*X) and a € K, we will denote {z € X : P(z) = a} by
V(P —-a). When a =0,V(P —0) =Z(P).

DEerFINITION 1.2. ([7], [8]). If {P,} and P are k-homogeneous poly-
nomials on X, we say that {P,} M, p (Mosco convergent), {P,} X p

(Kuratowski convergent), {P,} Y. p (Wijsman convergent), {P,} ——
P (r-convergent) if V(P, — a) is M-convergent, K-convergent, W-conv-
ergent, r-convergent to V(P — a) for all o € K, a # 0, respectively.

In [7] it is shown that K-convergence is equivalent to uniform con-
vergence on compacts sets and strong convergence is equivalent to norm

convergence. Also {P,} — P <= limcl(P,(B)) = cl(P(B)), for every
n
ball B C X.

In [8] it is shown that {P,} M P {P,} — P uniformly on
weakly compact sets and P € P(*X) is weakly sequentially continuous.

What about the convergence of Z(P,)? The different behavior of the
case @ = 0 is related to the fact that 0 is the unique critical value of
a homogeneous polynomial, and consequently it is possible to have a
change of the topology of V(P — ) near a = 0.

ProprosITION 1.1. ([7]). Let X be a complex Banach space, P and

P, nonzero k-homogeneous polynomials on X. If {P,} — P pointwise,

then Z(P,) - Z(P).

Proof. We have that L;Z (P,) C Z(P), because if P, (zp,) =0 and
{zn, } converges, then P <lilgn T, | =0.

Let’s prove that Z(P) C L; Z(P,). Let x be such that P(z) = 0. If
there does not exists a sequence {z, } converging to z such that P,(z,) =
0, then we may assume that there exists an € such that Z(P,)NB(z,¢) =
¢ Vn. Now we consider a complex line L = {z 4+ Az : A € C} such that
P is not identically 0 on L. Let hg and h,, denote the restriction to L of
P and P, respectively, and Q = B(z,e) N L. Then h,,hy : @ — C are
1-dimensional holomorphic functions, and {h,} converges uniformly to
ho on Q because {P,} converges uniformly to P on the compact c/(f2).
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The fact that h, does not have zeros in ) give us the following al-
ternative (Hurwitz’s Theorem): either hg is identically 0 or it does not
have zeros in 2. Both are impossible by the choice of L and the fact
that ho(z) = 0. O

The following easy example shows us that in the real case things are
worse.

EXAMPLE 1.1. ([7)). X =R? k=2, Pu(z,y) = 22+ 142, P(z,y) =

z2. We have | P, ||=| P ||= 1 and lim P,(z,y) = ( y) for all
n

(z,y) € X. But {Z ( »)} does not converge to Z(P) in the Kuratowski

sense, because Z(P,) = {(0,0)} for all n and Z(P) = {(0,y) : y € R}.

However we have:

ProposITION 1.2. ([7]). Let X be a real Banach space, P and P,
nonzero k-homogeneous polynomials on X such that dP(z) # 0,Vz # 0.

If {P,} — P pointwise, then Z(P,) X, Z(P).

Proof. 1f (P,) — P pointwise, it is clear that {P,(z,)} — P(z)
for every sequence {z,} converging to z € X. Then it is clear that
LsZ (P,) C Z(P). To prove that Z(P) C L; Z(Py), we consider a point
z € X such that P(z) = 0. If x = 0, then clearly 0 € L; Z(P,); otherwise
we choose y such that dP(z)(y) # 0 and define Qn(r) = P,(z + ry) and
Q(r) = P(z + ry); Q satisfies that Q'(0) # 0. But @, and Q are
polynomials of degree k over R such that {Q,} — @ pointwise and
consequently uniformly on bounded sets.

Now the fact that 0 is a root of @ and @Q’(0) # 0 enables us to claim
that there exists a sequence {\,} of roots of the @, converging to 0. So
(z + Any) € Z(Py) and liTrln(x + A\ny) = z, and the proof is finished. [

ProposITiON 1.3. ([7]). Let X be a complex Banach space, P and P,
nonzero k-homogeneous polynomials on X. Iflim cl(P,(B)) = cl(P(B))
n

for every open ball B C X, then Z(FP,) v, Z(P).

Proof. We consider \,(z) = d(z,Z(P,)) and A(z) = d(z, Z(P)).

Since {P,} — P pointwise, by [Th.1.17 [7]] P, = P and then it is
obvious that limsup A,(x) < A(z), and consequently if the result does
not hold then there exists z such that liminf A, (x) < A(z) = \. Passing
to a subsequence if necessary, we may assume that lirsn An(z) = X < N <

A. Let zg € B(0,1) be such that P(zg) # 0. Then 0 € P, (B(z,\')) for
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every n, and therefore 0 € ¢l (P(B(z,)'))). This allows us to choose a
sequence {y,} in B(z, \') such that lim P (y,) = 0.
n

Let e = A— X and define ¢, : D(0: &) — C as ¢n(w) = P (yn, + wxo).

A subsequence of {¢,} converges uniformly to a 1-dimensional polyno-

mial ¢ such that ¢(0) = lim ¢,,(0) = lim P (y,) = 0. On the other hand,
n n

¢n does not vanish, because P does not have zeros on B(z,\) by the
definition of A. Therefore using Hurwitz’s Theorem we conclude that ¢
must be identically 0, contradicting the fact that P(xg) # 0. O

Proposition 1.3 is false in the real case even if we have stronger hy-
pothesis:

ExaMPLE 1.2. ([7]). Let P, P, : cg — R defined as:

o0

1
P(z) = %2 (wr — $k+1)2
k=1

"1
Py(z) = ) (2 — Zg41)? -

k=1
We have {P,} — P uniformly on bounded sets and P(z) =0 < z =
0; Z(P) = {0}, Z(P,) ={x €cp: 21 = = Tpt1}. Therefore we

have that d(e;, Z(P)) = 1 and d(e1, Z(P,)) = 1/2, and consequently
limd(ei, Z(P,)) # d(e1, Z(P)). Obviously limcl(P,(B)) = cl(P(B)),
n n

since {P,} — P uniformly on bounded sets.

REMARK 1.2. ([7]). The Example 1.2 shows that the following rela-
tion, which is true in the complex case, does not hold in the real case:

"B = B(zg; 1), 0€ cl(P(B)),n>0= Z(P)NB{xg; r+1n) # ¢".
It is enough to consider xp = e;, r = 1/2, n = 1/4. Then it is clear
that 0 ¢ P (B(e1; 1/2+1/4)) but 0 € cl(P(B)) since

zn=(1/24+1/n)e; + i(1/2 —1/n)e; € B
j=2

and
0 < P(z,) <5/n% = 0.
REMARK 1.3. ([7]) In Example 1.2, dP(z) = 0 <= z = 0. Then by
Proposition 1.2 we have that Z(F,) X, Z(P).

Stronger conditions on P give us a similar result in the real case:



82 José G. Llavona

ProprosITION 1.4. ([7]). Let X be a real Banach space, P and P,
k-homogeneous polynomials on X such that P satisfies the following
condition:

(%) lim || dP(yn) [|= 0 == 0 € co({yn})-

If lim cl(P,(B)) = cl(P(B)) for every open ball B C X, then Z(P,)
n

W, z(P).

Proof. From the condition on the polynomial P we deduce that

dP(z) = 0 if and only if z = 0, and therefore, by Proposition 1.2,
Z (Py) X, Z(P). As in Proposition 1.3, if lim A, (z) # A(z) we would

have {y,} C B(z,X') such that lim P (y,) = 0. Now we define
n

d’n . [_618] B R1 ¢n(t) = P(yn + tzn)
where z, are points in the unit ball such that |dP (yn) (zn)| > 1/2
| dP (yn) ||. These polynomials never vanish and converge to a polyno-
mial ¢ such that ¢(0) =0. Then necessarily ¢'(0) =0 and im dP (y») (2n)
= lim ¢, (0) =0, so we conclude that lim || dP (y,) ||= 0, which is not
possible because 0 ¢ B(x, A) and ¢, ({yn}) C B(z, ). O

REMARK 1.4. ([7]). Condition (*), in Proposition 1.4, on the poly-
nomial P is weaker than the property of being a separating polynomial.

ProprosITION 1.5. ([7]). If X is a complex Banach space and P, P,
are nonzero k-homogeneous polynomials on X such that {P,} — P

uniformly on bounded sets, then Z(P,) —— Z(P).

Proof. Let B denote the unit ball of X. First we will prove that
Vr, e > 0 there exists ng such that Z (P,) N\rB C Z(P) +¢€eB,Vn >
ng. Indeed, otherwise there would exists 7,& > 0 and a sequence {z,}
contained in rB such that P,(z,) = 0 but B(z,,c) N Z(P) = ¢. Now
uniform convergence on 7B of {P,} gives us lirrln P(z,) =0.

Let’s choose zg € B such that P(z) # 0 and define ¢, : D(0,e) — C
as ¢n(w) = P(zp+wzp). Then ¢n(z) = P(a:n)Jr(’f)A (Tny- -y Tn, 20) W+
s+ (kfl)A(:rn, 20,--., z0) Wl + P(z)w", where A denotes the k-
linear form associated to P. A subsequence of {¢,} converges to a
polynomial ¢ such that ¢(®(0) = k!P(z) # 0. But ¢(0) = li7rln dn(0) =
li7rln P(z,) = 0, and this, together with the fact that ¢,, does nor vanishs,

gives us (Hurwitz’s Theorem) that ¢ = 0, which is a contradiction.
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We proceed with the other inclusion: Vr, € > 0 there exists ng such
that

Z(P)NnrB C Z(P,)+eB ¥Yn > ny.
If this is not the case, then there exist r > 0 and ¢ > 0 and {z,}
be such that z, € rB, P(zy,) = 0 and Z(P,) N B(zn,e) = ¢. Let
z0 € B be such that P(z) # 0, and define ¢n, dn D(0;e) — C
as ¢n(w) = P (T +w20), n(w) = Po(n + w2y). én never vanishes.
We choose now a subsequence of {¢,} converging to a polynomial ¢
identically zero, such that ¢(0) = 0; it is clear that the corresponding
subsequence of {an} converges to ¢ too. Hurwitz’s Theorem again give

us the contradiction. O

The Example 1.2 shows that in the real case uniformly convergence,

on bounded sets, of {P,} does not imply even Z(F,) Y,z (P).

The following example shows us that , even assuming W-convergence,
r-convergence of Z(P,) to Z(P) does not follow from uniform conver-
gence on bounded sets (in the real case) of the sequence {P,}.

ExampLE 1.3. ([7]). Let X =¢g, P, = Z %xi, P(z) = — a3

k=1 k=1
Then {P,} — P uniformly and Z(P) = {0}, Z(P,) = {z € ¢ :

1 = - = zn = 0} Z(P) X, Z(P) since d(z,Z(P)) =| = ||
and d(z,Z(P,)) =| z | too when n > ng, where ng is such that
| Zn |< 1/2 || Zn ||, Y > ng. However Z(P,) N 2B is never included in
Z(P) + %B, since ept1 € Z(P,) N 2B but e,41 ¢ %B,Vn. Therefore
{Z(P,)} does not converge to Z(P) in the strong sense.

1
k2

M]3

REMARK 1.5. ([7]). In Example 1.3, dP(z) = 2 xrey, and

£
Il

1
[e o]
therefore || dP(x) |1= 22 Elg | zi |. Hence inf{|| dP(z) ||1: z € S} = 0.

k=1
This fact suggests the following result.

ProposITION 1.6. ([7]). Let X be a real Banach space, P and P,
k-homogeneous polynomials such that inf{|| dP(z) ||:|| z ||= 1} > 0. If
{P,} — P uniformly on bounded sets, then Z(P,) — Z(P).

Proof. First we will prove that, if B is the unit ball of X, then
Vr,e > 0 there exists ng such that

Z(P,)NrB C Z(P)+eB Vn > ng.
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Otherwise there exists 7, > 0 and a sequence {x, } contained in r B such

that P,(z,) = 0 but B(zp,e) N Z(P) = ¢. Now uniform convergence on

rB of {P,} gives us lim P(z,) = 0. Since z,, € rB —e¢B Vn, we have
n

a positive constant ¢ such that | dP(z,) |> ¢ Vn, and we may choose
Yn in the unit sphere such that | dP(z,)(yn) |> ¢ Vn. Let’s define @, :
(—¢&,e) = R as ¢n(r) = P(zy, + ry,). A subsequence of {¢,} converges
to a polynomial ¢ such that ¢(0) = hran on(0) = lirrln P(z,) =0, and the
fact that ¢, does nor vanish gives us that ¢’(0) = 0 or equivalently that
1171111 dP(zn)(yn) = 0 which is a contradiction.

We are now going to prove the other inclusion: Vr,e > 0 there exists
ng such that

Z(P)ynNnrB C Z(P,) +€B, Vn > ny.
If this is not so, then there exist » > 0 and ¢ > 0 and {z,} such that
Tn € rB, P(z,) =0 and Z(P,) N B(zn,€) = ¢. Considering {y,} as in
the other inclusion, we may define
&, fn: (—e.6) = Ras :
&(r) = im P(zn + 1Yn), On(r) = Po(zn + ryn) passing to a subsequence

if necessary; ¢, never vanishes, and {¢,} — ¢ because of the uniform
convergence of the sequence {P,} to P on (r + £)B; but ¢(0) = 0 and
consequently ¢'(0) = 0 too, and so is clear that lign dP(zn)(yn) = 0,

which gives us the contradiction. O

REMARK 1.6. ([7]). The condition inf{|| dP(z) ||| z ||= 1} > 0 is
weaker than the property of being a separating polynomial but strictly
stronger than property (%) in Proposition 1.4, as the polynomial P in
Example 1.3 proves.

Finally in the real case we cannot infer Z(P,) M,z (P) even under
very strong conditions as the following example shows:

EXAMPLE 1.4. ([8]). Let us suppose that k is odd (the even case is
easier). Let us take @1, w2 € X* linearly independent, (we are only as-
suming that dim X > 1). Let us define P and P, as go’f"l (p1 + p2) and

(solf_l + %30]26_1) (¢1 + 2) respectively. P € P(*X) is weakly sequen-
tially continuous, P = lim P, in norm but Z(P) = ker p;Uker (¢1 + ¥2),
n

Z(P,) = ker (p1 + p2) and consequently the sequence {Z(P,)} does not
converge to Z(P) even in the Kuratowski sense.

However, in the real case, we have the following:
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ProproSITION 1.7. ([8]). If P € P(*X) is weakly sequentially con-
tinuous and dP(xz) = 0, for all x # 0, then the uniform convergence

on weakly compacts sets of the sequence {P,} to P implies Z(P,) M,
Z(P).

Proof. Since P is weakly sequentially continuous, the proof of the
second condition is trivial. To establish the first condition we have to
prove that for every x € Z(P), there exists a norm convergence to x
sequence (z,) such that P,(z,) = 0. If z = 0 the constant sequence
xn = 0 works. Hence we may assume z # 0; let us consider z € Sg such
that dP(x)(z) # 0. The following one-dimensional polynomials:

gn(t) = Pp(z + t2), g(t) = P(x + t2)

verifies that {g,} converges to g uniformly on the compact interval

[-1,1], g(0) = 0 and ¢'(0) = dP(x)(z) # 0. Consequently, there exists

a sequence {t,} such that limt, = 0 and g,(¢,) = 0 eventually. If we
n

define z, = z+1t,2, the sequence {z,} fulfils the required condition. O

Section 2

Plichko and Zagorodnyuk [16] have prove that for any positive in-
tegers n and d, there is a positive integer m = m(n,d) such that for
any complex polynomial P : C™ — C of degree d, there is a vector
subspace X, C C™ of dimension n such that P |x,= P(0). For further
background on related problems see [15]. In [3] the problem of finding a
good bound on m = m(n, d) is treated. Estimates for degrees 2, 3 and 4
are obtained. For instance, it is not difficult to see that m(n,2) = 2n+1,

2n

and for example the polynomial P(zy,...,2,) = Z zjz- vanishes on the
i=1

n-dimensional subspace generated by {e; + iey,...,e2,—1 + €2, }.

Now in the real case we study four special situations. The first is a
general result for real, symmetric, homogeneous polynomials of odd de-
gree. We next study real 2-homogeneous polynomials P, relating the size
of the subspace of zeros of P with the signature of the associated matrix.
We show a general result concerning the zeros of real 3-homogeneous
polynomials and finally we present several dichotomy results related with
existence of positive definite 2-homogeneous polynomials.
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PROPOSITION 2.1. ([2]). Let P be a symmetric homogeneous poly-
nomial P : R™ — R of odd degree. Then there is an [m/2|-dimensional
subspace contained in P~*(0).

Proof. Let P be a d-homogeneous polynomial on R™ where d is an
odd integer. It is known that the polynomials {>";", a7 | r € N} form
an algebraic basic for the symmetric polynomials on R™ (see, e.g. [18],
p- 79). Therefore there is a polynomial @ such that

i=1 1=] i=1

Now,

m m k1 m ks
ki,... ; i
P E zie; | = E O‘z'll,’...,’ilzs § :le E :w? .
i=1 s i=1 =1

i10eris;

i1k1+igko+ isks=d

Note that in each expression 41k1 + - -+ + i;ks = d, some of the i;’s
must be odd. Consider the [m/2]-dimensional subspace

H = [61 €25 E2[m/2-1 T ez[m/z]] ;
clearly, if z € H then P(z) = 0. So, H C P~*(0). O
The same works in the infinite dimensional case:

PRrROPOSITION 2.2. ([2]). Let X be a real Banach space with a sym-
metric basis and let P be a homogeneous symmetric polynomial of odd
degree. Then P~1(0) contains an infinite dimensional subspace.

Proof. Let P be a d-homogeneous polynomial on X where d is an odd
integer, and let {e,,} be the symmetric basic of X. By the representation
of symmetric polynomials given in [9], either P = 0 or there exists an
integer N > 1 such that the set of polynomials {3 oo, 27 | 7 > N} is an
algebraic basis for the space of symmetric polynomials on X. Therefore,
if d < N we have P = 0; otherwise, there is a polynomial Q : RN+l

R such that
0 oC x
P (Za:iez) =Q (Zxﬁ,,me) .
i=1 i=1 i=1
Then,
oo o0 kl o0 ks
k ks ; i
P(Soe)= X () (D)
i=1 Toeeos is; =1 =1

i1k14+i2ko+--+isks=d



Zeros of real polynomials on Banach spaces 87

Consider now the infinite dimensional subspace:
H = [61 — €9,3 — €4,...,€2n—-1 —62n,...,].

Clearly, H is an infinite dimensional subspace contained in P~1(0), as
we required. 0

We turn now to searching for subspaces contained in the zero set
of 2-homogeneous real polynomials. We are able to obtain a simple,
general result, which depends only on the signs of the eigenvalues of the
quadratic form associated to the polynomial.

We recall that a quadratic form Q on R* (or, equivalently, the associ-
ated symmetric matrix or bilinear form A) is said to be positive definite
if Q(z) > 0 (equivalently, A(z,z) > 0) for all z € R*, z # 0. In the
same way, () will be negative definite whenever —(@) is positive definite.
We denote by p(Q) (resp. n(Q),2(Q)) the number of positive (resp.
negative, zero) eigenvalues with their multiplicity.

PROPOSITION 2.3. ([2]). Let Q € P(®R¥). Then, if r = min{p(Q),
n(Q)} + 2(Q) there is an r-dimensional subspace Y such that ¥ C

Q™1(0).

Proof. Consider a basis {wi,...,wr} with respect to which Q is

diagonal. Then,
k k
Q (Z yiwi) = iy,
i=1 i=1

where without loss of generality, we may assume that p; = +1 or 0. We
may also assume that these eigenvalues are written so that gy =1, us =

=1, us =1,...,p2s—1 = 1, pgs = —1, where s = min{p(Q), n(Q)}, and

that pg_,(Q)+1 = - = px = 0. It is easy to verify that the r-dimensional
subspace

Y = ['wl T W2, ..., Wos—1 + W25, W (Q)+15 - - - ,wk]
is contained in Q~1(0). O

Next result shows that every 3-homogeneous polynomial P : R¥ — R
vanishes on a subspace whose dimension n depends only on k, where
n— oo as k — co.

TueoreM 2.1. ([2]). Let P : R¥ — R be a 3-homogeneous polyno-
mial and
_ 3%(6n+5)—1

k2 4
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for some n > 0. Then, there is an [(n/2)]-dimensional subspace con-
tained in P=1(0).

It is easy to see that every 3-homogeneous polynomial in at least
k = 2 variables vanishes on an one dimensional subspace. The estimate
provided by the theorem in this case is for k£ to be not smaller than
38. If a 2-dimensional subspace is required, so that n = 4, then the
theorem gives the estimate that any 3-homogeneous polynomial in k& =
587 variables has such a subspace. We remark that more, and better,
information seems to be known for the analogous problem for complex
polynomials. For example, every homogeneous complex polynomial(of
any degree) in two or more variables vanishes on a complex line. In fact,
one can show that any 3-homogeneous complex polynomial in 271 (n+1)
variables vanishes on a n-dimensional subspace. ([3]).

An k-homogeneous polynomial P : X — K is said to be positive
definite if P(xz) > 0 for every = and P(z) = 0 implies that z = 0.

PROPOSITION 2.4. ([1]). A Banach space X admits a positive defi-
nite 2-homogeneous polynomial if and only if there is a 2-homogeneous
polynomial P on X whose set of zeros is contained in a finite dimensional
subspace of X .

REMARK 2.1. ([1]). Any separable space and C(K) spaces, when
K is compact and separable, admit a positive definite 2-homogeneous
polynomial. On the other hand, X = ¢o(I') and X = [,(I"), where T’
is an uncountable index set and p > 2, do not admit positive definite
2-homogeneous polynomials.

As we remarked in 2.1, the following result of interest only for non-
separable spaces.

THEOREM 2.2. ([1]) Let X be a real Banach space which does not
admit a positive definite 2-homogeneous polynomial. Then, for every
P € P(%3X), there is an infinite dimensional subspace of X on which it
is identically zero.

Proof. Suppose X does not admit a positive definite 2-homogeneous
polynomial and that P € P(2X). Let S = {5 : S is a subspace of Xand
P |s= 0}. Order S by inclusion and use Zorn’s Lemma to deduce the
existence of a maximal element S of §. Suppose that S is finite di-
mensional. Let vy,...,v, be a basis for § and let T' = () cgker 4, =
(iey ker A,, where A, : X — R is the linear map which sends y in X

to P(z,y). We note that S € T. To see this suppose that y € S. Then



Zeros of real polynomials on Banach spaces &9

for every s € S, s+ y is also in S. Since
0= P(s+y) = P(s) +24:(y) + P(y) = 24:(y)

for every s € S we see that y € T.

Since S is finite dimensional we can write T as T = S@ Y for some
subspace Y of T It is easy to see that all the zeros of P |1 are contained
in S. Therefore, either P |7 or —P |r is positive definite on Y. Let us
suppose, without loss of generality, that P |7 is positive definite on
Y. As S is n-dimensional we can find ¢1,...,¢, so that P+ >, ¢?
is positive definite on T. Note that T has finite codimension in X
and hence is complemented. Let 7 be the (continuous) projection of
X onto T. Then (P+ Y1, ¢2) omp + Y1) A2 is a positive definite
polynomial on X, contradicting the fact that X does not admit such a
polynomial. O

REMARK 2.2. In ([14]) it is shown that every C-valued polynomial P
on an infinite dimensional complex Banach space X such that P(0) =0
is identically 0 on an infinite dimensional subspace.

THEOREM 2.3. ([1]) Let X be a real Banach space which does not
admit a positive definite 4-homogeneous polynomial, and let (¢)72; be
a sequence in X*. Then for every countable family (P;)$2, C P(2X),

oo
there is a non-separable subspace of ﬂ ker ¢y, on which each P; is iden-

k=1
tically zero.

Note that if X does not admit a positive definite 4-homogeneous
polynomial, then it cannot admit a positive definite 2-homogeneous one
either. An example of an X satisfying the hypotheses of Theorem 2.3 is
X = 1,(I), where I is an uncountable index set and p > 4.

Proof of Theorem 2.3. The argument begings in a similar way to
our earlier proofs. As before, let S be a maximal element of S = {S :
S is subspace of (Vg ker ¥, and P; |[¢s= 0, all j}. Suppose that S is
separable, with countable dense set (v;);2;. Let T = (g2, kere, N
Mi=1 Ny ker (A7) vi. Asbefore, S CT. WecanwriteTasT = S, Y
for some subspace Y of T'. Since all the common zeros of P; |7, j € N, are

. . P . . .
contained in S, Z;’il J"’TI;JI? is positive definite on Y. As S is separable

P2
we can find (¢:);Z, so that 357° ) wpbm + 3072 ¢ is positive definite
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on T. Then

Z 2”PH2+2¢4+ZZZ22H Zk2”’l,bk“4

i=1 j=1

is a positive definite polynomial on X, contradlctlng the fact that X
does not admit such a polynomial. O

COROLLARY 2.1. ([1]). Let X be a real Banach space which does
not admit a positive definite 4-homogeneous polynomial. Then every
P ¢ P(3X) is identically zero on a non-separable subspace of X.

Proof. Consider P € P(3X) and let S be a maximal element of
S = {5 : S is a subspace of X and P |s= 0}. Suppose that (v;);2; is a
countable dense subset of S. Let Av“v] X — R be the linear map which

sendes z in X to P(Ui,vj,r) and @Q,, : X — R be the continuous 2-

homogeneous polynomial which sends z in X to P (vi, x2). By Theorem
2.3,

o0 o0
ﬂ ker Ay, »; N ﬂ ker Qy,
i,j=1 i=1
contains a non-separable subspace which we denote by 1. Suppose that
y € T is such that P(y) = 0. Then for every z = >, a;v; € span S and
A € R we have

P(z+ Ay) = P(z) + 3Mz2(y) + 3\2P(z,y,) + N P(y)

= P(z) + 30 ) 00 Av, o, (y) + 3N Zaszz + X3P(y)
7]

=0

Hence, by continuity of P, P(z+Ay) = 0 for every z € S. By maximality
of S it follows that all the zeros of P |1 are contained in S. Since S is
separable, we can write T as T = (SNT) &, Y for some non-separable
subspace Y of T. Since all the zeros of P |r are contained in S, P |y
is a 3-homogeneous polynomial on an infinite dimensional space which
has its only zero at the origin, an impossibility. O

The final theorem of this section is a natural extension of the two
preceding results.

THEOREM 2.4. ([1]) Let X be a real Banach space which does not
admit a positive definite homogeneous polynomial. Then, for every poly-
nomial P on X such that P(0) = 0, there is a non-separable subspace
of X on which P is identically zero.



Zeros of real polynomials on Banach spaces 91

In [1, section 4] the special cases of C(K) and absolutely (1,2)-
summing and nuclear polynomials is considered.

Section 3

This section is concerned with the approximation by zeros of orthog-
onally additive polynomials on real /, and L, spaces. We consider [, and
L,[0,1] spaces, 1 < p < oo, with the usual Banach lattice. (See [13]).

DEFINITION 3.1. Let X be a Banach lattice. A function f: X — Ris
said to be orthogonally additive if f(zx+vy) = f(z)+ f(y) forall z,y € X
such that =z L y.

Po(" X ) will denote the space of n-homogeneous orthogonally additive
polynomials on X.

ExaMPLE 3.1. ([17]). Let X =4, 1 < p < co. Po("X) is isometri-
cally isomorphic to E if n < p and to 4, if n > p. The isomorphism

is given by the association P« g = (a; = P(ej))j>1-

EXAMPLE 3.2. ([17]). Let X = L,[0,1], 1 < p < 00, and let px be
Lebesgue measure.

Forl <n<p P G Po("X ) < There exists a unique function
§ € L_z_ such that P(z = [} €xdp.

Forn=p, P e ’PO("X ) < There exists a unique function £ € Lo
such that P(z) = fo Exndp.

Forn>p, PeP,("X) < P=0.

For a Banach space X and an n-homogeneous polynomial P, P # 0,
we consider Z = P~Y(0) and the sets D;Z = {>]_ 2z : z € Z,Vi=1,
..»J} ( = 2). Finally we consider H = span[Z], the subspace of
X generated by finite linear combinations of elements of Z. Note that
H =;> D;Z.

THEOREM 3.1. ([12]). Let 1 < p < o0, n > 1 an odd integer, and
P an n-homogeneous orthogonally additive polynomial on {4, associated
with the sequence a = (a;);>1.

(i) If there exist at least three j's so that a; # 0, then e; € D3Z for
all j € N. In particular, H is dense in (.

(ii) If there are at most two j's with a; # 0, then Z is a closed hyper-
plane of £,.
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THEOREM 3.2. ([12]). Let 1 < p < oo, n an even integer, and P an
n-homogeneous orthogonally additive polynomial on ¢, associated with
the sequence a = (a;);>1.

(i) If the function sign{a;), aj # 0, is constant, then Z = H = {z €
£, : z; = 0 whenever a; # 0}.

(ii) If there exists a pair i # k such that a;, ar # 0 and sign(a;) #
sign(ay), then e; € Dy Z for all j € N. In particular H is dense in £p.

From what follows we consider the usual decomposition of a function
a difference of two positive maps £ = €T — £~ and we note by AT, A~
the respective support of £*,£~ and Ag the complement set of AT U A~
in [0,1]

THEOREM 3.3. ([12]). Let 1 < p < oo, n an odd integer, 1 < n < p,
and P an n-homogeneous orthogonally additive polynomial on L,[0,1]
associated with the function £ € L_»_[0,1].

p—n

(i) If€ > 0 (or £ <0) a.e. then, xg € D3Z, for all measurable set
E c[0,1].
(ii) If¢ is arbitrary then, xp € D4Z, for all measurable set E C [0, 1].
As a consequence of either (i) or (ii), H is dense in Ly[0,1].

THEOREM 3.4. ([12]). Let 1 < p < 00, n an even integer, 1 <n < p,
and P an n-homogeneous orthogonally additive polynomial on Ly[0, 1]
associated with the function £ € L_p_[0,1].

p—n

() IFE>0(or £ <0) ae (iepu(AN).u(A~) =0), then H =2 =
{z € Lp[0,1] : u(support(z) N support(¢)) = 0}

(i) If p(A*).u(A™) > 0 and E C [0,1] ia a measurable set, then

1. (AT N E).u(A~ NE) =0 implies xg € Z or xg € D2Z.

2. u(AYNE).u(A~NE) >0 implies xg € DsZ.

As a consequence of either (a) or (b) in (ii), H is dense in Ly[0, 1].

We proved that given an n—homogeneous orthogonally additive poly-
nomial on L, such that H is dense, it is enough to consider D;Z with,
at most j = 4, in order to obtain the decomposition by zeros of a char-
acteristic function. Now, the problem of when it is possible to consider
only Dy Z, is treated.

THEOREM 3.5. ([12]). Let p = n be an odd integer, n > 1 and P an
n-homogeneous orthogonally additive polynomial on Ly[0,1] associated
with the function £ € L0, 1].

(i) If there exists T C [0,1] a dense set such that £(tT) # 0 for all

t €T, then x[qp € D2ZlI» for all subinterval [a,b] C [0, 1].
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(i) If ¢ = xF for F C [0,1] a measurable set, then xg € DyZ\'l» for
all measurable set E C F.

As a consequence of either (i) or (ii), H is dense in Ly[0, 1].

References

[1] R. M. Aron, C. Boyd, R. A. Ryan and I. Zalduendo, Zeros of polynomials on
Banach spaces: The real story, preprint.

[2] R. M. Aron, R. Gonzalo and A. Zagorodnyuk, Zeros of real polynomials, Linear
and multilinear algebra 48 (2000), 107-115.

[3] R. M. Aron and M. P. Rueda, A problem concerning zero - subspaces of homo-
geneous polynomials, Linear topological spaces and complex analysis 3 (1997),
20-23.

[4] M. Baronti and P. Papini, Convergence of sequences of sets, Methods of functional
analysis in approximation theory, ISNM 76, Birkhéauser, Basel, (1986), 133-155.

[5] G. Beer, Convergence of continuous linear functionals and their level sets, Arch.
Math. 52 (1989), 482-491.

[6] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, S.M.M. Springer,
(1999).

[7] J. Ferrera, Convergence of Polynomial Level Sets, Trans. Amer. Math. Soc. 350,
n° 12, (1998).

, Mosco convergence of sequences of homogeneous polynomials, Rev. Mat.
Complut. 11, no. 1, (1998).

[9] M. Gonzalez, R. Gonzalo and J. A. Jaramillo, Symmetric polynomials on re-
arrangement invariant function spaces, J. London Math. Soc. 59 (1999), no. 2,
681-697.

[10] R. C. Gunning and H. Rosi, Analytic functions of several complex variables,
Prentice-Hall Series in modern analysis (1965).

[11] J. Harris, Algebraic Geometry, A first course, Grad. Texts in Math. 133, Springer
Verlag, 1995.

[12] S. Lassalle and J. G. Llavona, Zeros of orthogonally additive polynomials on £,
and L, spaces, preprint.

[13] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer, 1977.

[14] J. Mijica, Complexr Analysis in Banach Spaces, Math. Studies 120, North-
Holland, Amsterdam, 1986.

[15] V. Pestov, Two 1935 questions of Mazur about polynomials in Banach spaces: A
counter exzample, Questiones Mathematicae, to appear.

[16] A. Plichko and A. Zaragodnyuk, On automatic continuity and three problems of
the Scottish Book concerning the boundedness of polynomial functionals, J. Math.
Anal. Appl. 220 (1998), n° 2, 477-494.

[17] K. Sundaresan, Geometry of Spaces of Homogeneous Polynomials on Banach
Lattices, Applied geometry and discrete mathematics, 571-586, DIMACS Ser. Dis-
crete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Prov., RI, 1991.

[18] B. L. van der Waerden, Modern Algebra, Ungar, 1964.




94

José G. Llavona

Departamento de Andlisis Mateméatico
Facultad de Mateméticas

Universidad Complutense de Madrid
28040 Madrid, Spain

E-mail: JL Llavona@mat.ucm.es



