Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 7 Issue 1
- /
- Pages.35-43
- /
- 2004
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle
차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템
Abstract
In this paper, we proposed a vehicle recognition and electronic toll collection system with detection and classification of vehicle identification mark and emblem as well as recognition of vehicle license plate to unman toll fee collection system or incoming/outcoming vehicles to an institution. In the proposed algorithm, we first process pre-processing step such as noise reduction and thinning from the rear side input image of vehicle and detect vehicle mark, emblem and license plate region using intensity variation informations, template masking and labeling operation. And then, we classify the detected vehicle features regions into vehicle mark and emblem as well as recognize characters and numbers of vehicle license plate using hybrid and seven segment pattern vector. To show the efficiency of the proposed algorithm, we tested it on real vehicle images of implemented vehicle recognition system in highway toll gate and found that the proposed method shows good feature detection/classification performance regardless of irregular environment conditions as well as noise, size, and location of vehicles. And also, the proposed algorithm may be utilized for catching criminal vehicles, unmanned toll collection system, and unmanned checking incoming/outcoming vehicles to an institution.
본 논문에서는 고속도로나 도심 진입 차량의 무인 자동과금 및 주요시설 출입 차량의 통제와 관리를 위하여 차량번호판 인식뿐만 아니라 차량 표시 문자와 제조사 식별자 검출 분류하여 차량의 정보를 판독하는 차량정보인식 및 자동과금시스템을 제안하였다. 제안한 알고리즘은 차량 후면부에서 획득된 영상으로부터 잡음제거, 세선화 등의 전처리 과정을 수행하고 템플릿 마스킹 및 레이블링 연산처리를 수행하여 차량표시문자, 제조사 표식자 및 번호판 영역을 각각 검출하였다. 또한, 검출된 특징 영역으로부터 특징자의 구조적 특징 및 패턴정보를 이용하여 표시문자와 제조사 표식자를 분류하였고, 하이브리드 패턴벡터와 세븐세그먼트 패턴벡터를 사용하여 차량번호판의 문자 및 숫자를 각각 인식하였다. 실험에서는 실제 고속도로상에서 제안한 차량인식 시스템에서 획득된 실 영상을 사용하여 인식 성능을 수행하였다. 실험 결과 제안한 알고리즘이 잡음, 외부환경, 차량의 크기에 무관하게 차량 특징자를 정확히 검출 분류하였으며 제안한 시스템은 범죄차량 단속, 차량자동과금 및 관공서 등의 차량입출력 관리의 무인화에 적용이 가능하다.
Keywords