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In this study, new way of evaluating manufacturing cost is organized and applied. In real manufacturing circumstances,
tolerances of parts and assemblies are closely related to the cost. Several researches have been tried to identify the relations
and set models. Moreover tolerances have influences on the maintenance of the manufacturing facilities. However past
researches have not considered the processing cost for the failed products. Therefore maintenance costs are represented
as stochastic expressions, which include reliability of assembly and facilities. The stochastic nature of the maintenance cost
is modeled and solved using Markov chain approach. Results show that this approach gives reliable estimations with remarkable

computing time reduction.
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1.ME

In manufacturing processes, the dimensions have
distributions around the desired values. In the assembly
process, the parts are selected from the stack randomly.
The sum dimensions appear as the sum of the dimen-
sions of the parts under consideration put into a given
assembly. The characteristics describing the statistical
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behavior of the sum dimension can be calculated based
on the statistical parameters of the individual dimen-
sions: In real manufacturing circumstances, tolerances
of parts and assemblies are closely related to the cost.
Several researches have been tried to identify the
relations and set models.

Several cost function models for tolerances is the
mathematical representation of the manufacturing costs
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in terms of the tolerances. In most cases monotonically
decreasing functions are selected as cost functions
because of the monotonic behavior of manufacturing
costs for tolerances . Using the models, researches to
optimize the overall assembly cost were also tried®.
Because the stochastic nature of the tolerances and yield,
stochastic mathematical programmings(s’@ and simulation

methods™®

were tired to solve the problem. However
the researches have not considered the processing cost
for the failed products. Moreover tolerances have influ-
ences on the maintenance of the manufacturing facilities.
Therefore the cost models for producing certain amount
of products have to include the considerations on facility
maintenance.

Several researches were performed to represent the
production cost as the probabilistic maintenance model.
The most frequently used probabilistic model of produc-
tion costing is due to Baleriaux, Jamoulle and Guertechin®,
In the Baleriaux model, the hourly loads for the forecast
time horizon are considered deterministic"'”. Methods
for computing the expected production costs are well
developed"”. However, the variance of the cost has only
recently been studied’>"”. Mazumdar and Yin devel-
oped formulas for the variance of production cost™.
Bloom"? has developed the recursive equation for the
rate of production cost.

In this paper, conventional cost function model is
modified by adding the facility maintenance cost.
Markov chain is introduced to distinguish the failure
state to repairing state. The recursive equation for the
production cost is developed further to be applied to
modified cost function model. A numerical example is
selected and solved. The resulting cost is compared with

the simulation result.

2. Manufacturing cost models

2.1 General cost function

The domain of dimensions is divided into a safe
region and a failure region by inequalities. Those
inequalities are the design functions (i.e. constraints on
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the sum dimensions). The intersection of the safe region
and the acceptable tolerance region is referred to as the
reliable region. The reliable region depends on the
standard deviation ¢j of each dimension since the
tolerance region varies with ¢ j. An important concept
called yield is computed as the probability of x being in
reliable region. Let xiu and xil represent the upper and

lower limits of an individual dimension xi in an

assembly. Then the yield is represented as

Y= _[ PN )X )
I eRy

where ¢(x;,---,x») is the multivariate normal probabil-
ity density function
RR represents the reliable region.

As discussed earlier it is not easy to compute the yield
Y from the set of tolerances (standard deviations) that
constitute the multivariate normal probability density
function in equation (1) when the dimensionality
becomes high
is the
mathematical representation of the manufacturing costs

The cost function model for tolerances
in terms of the tolerances. In most cases monotonically
decreasing functions are selected as cost functions
because of the monotonic behavior of manufacturing
costs for tolerances”. In practical modeling, the costs
are estimated for several manufacturing processes. Then
the coefficients of the cost function are calculated using
curve fitting techniques. There are several cost function
models for tolerance variables. Two common models are
the reciprocal squared modef® and the exponential
model®.

function is represented as

In the reciprocal squared model, the cost

C(t)=;—+f 2)

In the exponential model:

C(t)=ae><p(~%)+f 3

where a and b are constants for variable manufacturing
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cost, and f is a constant for fixed manufacturing cost. In
multi-dimensional model, total manufacturing cost can
be obtained by summing the individual costs for each
dimension:

cw=Ycu,)

=1

@

or in the standard deviation domain:

Clo)=Y (o))

j=1

®

In a real design situation, the aim of solving the
optimal tolerance allotment problem is to determine the
cost minimizing tolerances of each dimension while
guaranteeing the desired yield (spec yield) of the
assembly. In order to guarantee the spec yield, a yield
calculating method, such as Monte Carlo simulation,
should be

procedure. However, Monte Carlo simulation requires

implemented as an inner calculation
many sampling points to result in a desired accuracy. In
real manufacturing processes, the failures in assembly
and manufacturing facilities cause additional cost
increases. Therefore real manufacturing cost, Creal, is

expressed as

Creal =C - l dx—Y,,,.) >
rea (o)+r<—( ek, #(x) spec) > (6)
a, x20
where < a >=
{O, a<(
r is cost coefficient and positive
or
Creal =C(o)+ A @)

where repairing cost
A=r< —(’[ Fx)dx — V) >
xeRy

Simulation schemes are suggested to overcome the

difficulties of domain and dimension. Monte Carlo

(7.8)

methods "™ are the best known methods.
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2.2 Recursive formulation of manufacturing
cost

It is assumed that the costs are being calculated for a
manufacturing system consisting of N generating units.
For two manufacturing state Xo,yo, we define the
transition probability by po(yo | Xo). The limiting
probability for the state xo is denoted by mo(xo). We
define pi“)(yi | x) to be the one-step transition
probability for moving from state x; to y; for unit i (x;,
yi = 0,1; state 0 corresponds to a capacity value of 0,
and state 1 corresponds to a capacity value of c;.).

For i#j, Xi(t) and X(s) are independent for all values
of t and s. The process Xo(t) is independent of each
Xi(t). Let A; be the failure rate and g be the repair rate
for unit i. Then, the unavailability or F.O.R. of this unit
is

A

Y ®

Pi

From the formula by Ross"®

on the transition proba-
bilities, we approximate the transition probabilities at the

end of each process to be

q _q_e-(ﬁ.w,)
i 1

D+ q’_e*(/l,w,)
g+ pre-t ) ©)
1

PV~ pa) o
' ' Pi ”ple_(l'*#')

When A;! and g;! are both large, the one-step

transition probability matrix p{" for the unit can also be

approximated as follows:

P SV
! A 1=

Both approximations yield the limiting probability for

(10)

the available capacity of unit i to be

7 (0) =Pi
zi()=g;
Having defined the Markov chains for the manufac-

turing units and the load, we can combine these two
chains to form the Markov chain for the manufacturing
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system. Let x = [xo, xi,"--, xN] be the state vector where
xo represents the state of the load and x;, i =1, 2, ..., N,
denotes the available capacity of each unit i such that x;
= ¢ if unit i is up and x; = O if unit i is down. The
transition probabilities and limiting probabilities for the
system are given by

N
psys(yO’ylv--:.vN{xO’Xl'l""'xN ):Po(.Vol-xo)-n pl(])(y1|'x1)

i1
an
12

N
T gy (X s Xy peees Xy ) = 70 (g ).H/t,- (x;)
i=l
Defining the transition probability matrix and the
matrix of limiting state probabilities by P and Tl gs

the fundamental matrix for the Markov chain’'” is given

by

k= g(Psyc - nxys )k =[[ - (ny\ - nx).\')]‘] (13)

The number of rows and columns in Py and Tl s
equals L - 2", Thus the state space increases exponen-
tially with N, the number of manufacturing units. We
define A (x) to be the manufacturing cost incurred by
the system per hour when the system is in state [xo,Xi,
..Xn]. To apply the asymptotic formulas for the

evaluation of production cost mean and variance, let x(¢)
= [xo(8),xi(£),....xn(£)] denote the state vector of the
generation system at process t.

Define

%, y: states of the Markov chain

A (%): cost rate for state x ie., the manufacturing

costof the system per unit time when the system is in
state x z(x): limiting probability for state x
F(y| x): element of the fundamental matrix where

the state of the row is x and the state of the column is

~

y.

While applying the above formulas to estimating the
production costs of a system consisting of a large
number of generating units, one faces the problem of

how to evaluate A, f and 7 in an effective manner,
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taking into account the large state space of the Markov
chain. From (11) and (12), the transition probabilities
and the limiting probabilities have nice product forms
where the individual terms represent probabilities for the
load and the manufacturing units. This property provides
a means for easily developing recursive procedures for
computing these quantities by considering one unit at a
time. Unfortunately, to obtain the fundamental matrix,
the matrix inversion cannot be done without first con-
structing the entire transition probability and the limiting
probability matrices for the entire generation system.
The approximate recursive procedure given below
precludes the need for matrix inversion, and makes the
computation of the asymptotic variance of the produc-
tion cost feasible for large systems.

Suppose that we have already calculated the marginal
cost  A(Xo,Xis1,....xn) of the units i+1,i+2,...N, expressed
as the corresponding availability states of these units,
and we are now ready to incorporate unit i. Suppose that
the available generating capacity of unit i is x; . If the
load of xp is less than x; (x¢> 0), then unit i is the
system’s marginal unit and its running cost k; is the
system’s marginal cost. Then the marginal cost in the
interval 0<xo<x; is ki which can be represented by

kAR (x0) - RO(xg = x)3.

where

0 1; x20
R (x)=
0; x<0

If the load xo exceeds xi, then one of the units i+1,
i+2,..,N is marginal; since the addition of x; reduces the
effective load by this amount for the remaining units,
the marginal cost is A(Xo-Xi,Xi+1,-...Xn). Thus, noting that

A(X0,Xis...,.XN) = 0 when x¢<0, we have

A X0 X ey Xy )
= AU(Xg = X;2 Xyp e Xy ) + kAR (x0) — R (3 — x,)}

Axg) = ky o R (xp)

Now, let A (x,) be the expected value of A(xo, xi,
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.- Xn), With respect to n(xi,Xi+1,....xn), the limiting distri-
bution of x;,...xy. Then, using the property that the
limiting probability has a product form,

Xy Xy
=Z ZA(XO_J‘%XH] ------ SN (X415 XN (X))

R 7 FRTN: 4

.
+ Z Z"" {k‘(xo)— R (xp - x;)}rr(xmwx/v Y (x;)
X, v

i Kl X

- Z{XM (x0 ~ %)~k R (xg - x,-)}ir,-(x,)+ &R (x0)
X,
(14)

and AN+1(x0)=ky4(R' (x0) .
Thus, the expected manufacturing cost of the system
is:

15)

X, Xp e Xy

= le(xo 7o (xq)

Yo

3. Numerical results

For the numerical example, a problem from Lee and
Woo was selected. The shape of the assembly is
shown in Figure 1. The linear design functions for this

example are:

Fi(x)=—x; — x5 +5.005
F(x)=x, —x; — xg + x; —0.0003
Fi(x)=x7 —X¢ — X3 + X, +0.001

Fa(x)= x4 —x3— x5 —0.0003

Fi(x) is the constraint on the size of the base part.
The other design functions represent the clearance con-
dition for assembly. The nominal dimensions are given
asx' = (1.0 2.0 3.0 40 1.0 0.998 2.0 2.998). The
reciprocal squared cost function model, equation (5),
was modified and used to define total manufacturing
cost as
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_q x1073

C. =
l(o.l) (60, )/),

(16)

The coefficients in equation (16) were set by Lee and
Wooas:aj=a;=1.0,a3=as = 1.5, as = 0.8, ag = 0.9,
a; = 0.8, and a3 = 0.6; and b; = 2.0, b, = 1.8, by = 1.7,
bs =2.0, bs =3.0, b = 2.0, and b; = bg = 1.9. The spec
yield is 95%.Tolerances for each dimensions were set
as: t; = 0.00333, t, = 0.00133, t3 = 0.00143, t; =
0.00305, ts = 0.01429, ts = 0.00171, t; = 0.00133, tg =
0.00143.

Tables 1 provides an example of a manufacturing
system that has been patterned after the Reliability Test
System™®. Table 1 shows the manufacturing units(j) in
their loading order with their capacity(c;), cost(k;) and
reliability parameters( A; ' and ;1.

Let xo and yo denote two load states That is, we
assume
fyy=x+1

1
Po(.Vo|xo) 3{

0 otherwise
and

el

Fig. 1 Assembly feature
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Table 1 Manufacturing facilities

[?i;ﬁ Xi <j Pj VA | Vy; C].:t’
1-2 X1 1000 | .1000 | 1440 160 4.50
3 X2 700 | .0977 | 1200 | 130 5.50
4-5 X3 600 | .0909 | 1100 | 110 5.75
6-8 X4 500 | .0873 | 1150 | 110 6.00
9-14 | X5 300 | .0654 | 1000 70 10.00
15-19 | X6 200 | 0535 | 850 48 14.50
20-26 | X7 100 | 0741 | 600 48 | 2250
27-32 | X8 100 | .0331 | 350 12 | 44.00

Table 2 Comparison of the Recursive equation with

Simulation
Comparison Total cost, Creal
Expected Simulation 26284
Value Recursive 2632.2
Simulation 336.92
CPU (seconds) -
Recursive 3.52

po(24) =1
Po(30|24) = 0.y, = 2.3....,24.

The limiting probabilities of each manufacturing state
are

71'0()(0) = 1/24. XO = 1.2..24

For the manufacturing situation described above,
Creal in equation (7) can be calculated by adding the
costs described in equation (16) and (15). The results are
shown in Table 2 which also gives the corresponding
point estimates obtained from Monte Carlo simulation
with 8000 runs. The respective CPU-times are also
shown. Simulations and calculations are done by
Penttum 4 PC. It is seen that the recursive procedure
provides very accurate evaluations where they are
almost indistinguishable from the Monte Carlo results.
The computer time needed by the approximation
compares well with the Monte Carlo simulation. Under
the assumption of periodic load, the recursive formulation

is much faster compared to Monte Carlo with 8000 runs.
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4. Conclusion

New approach to evaluate the manufacturing cost is
tried. The failure of the manufacturing facilities is
related to the tolerances of the products and assemblies.
To overcome the computational complexities in eval-
uating the cost, Markov chain process is introduced and
modeled for the problem. Results show that this
approach gives reliable estimations with remarkable

computing time reduction.
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