Abstract
Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a neural network feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, hybrid control method of neural network controller and PID controller is presented. A neural network controller is operated as a main controller, a PID controller is a assistant controller which operates only when some undesirable phenomena occur, e.q., when the error hit the boundary of constraint set. The robust control function of neural network-PID hybrid controller is demonstrated by speed control of Motor.
산업자동화의 고정밀도에 따라 궤환 제어시스템은 강인한 제어가 요구되고 있다. 하지만 신경망 궤환 제어시스템이 외란의 영향을 받았을 때, 시스템의 강인한 제어는 어렵게 된다. 본 논문에서는 이러한 문제를 해결하기 위한 한 방법으로 신경회로망제어기와 PR제어기의 복합형 제어방법을 제시하였다. 신경회로망 제어기는 주 제어기로서 동작하고, PID제어기는 허용오차가 경계영역을 벗어날 때 동작하는 보조제어기로 사용된다. 신경회로망-PID복합형제어기의 강인성은 전동기의 속도제어에 의해서 확인하였다.