Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense

Eun Pyo Lee

Department of Mathematics, Seonam University

Abstract

We introduce the concepts of fuzzy (r, s)-semiopen sets and fuzzy (r, s)-semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense and then we investigate some of their characteristic properties.

Key words: intuitionistic fuzzy topology in Sostak's sense, fuzzy (r,s)-semiopen set, fuzzy (r,s)-semionitinuity

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [11]. Chang [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Sostak [10], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay, Hazra, and Samanta [3], and by Ramadan [9].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker and his colleagues [4,6,7] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.

Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in Sostak's sense as a generalization of smooth fuzzy topological spaces and intuitionistic fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy (r,s)-semiopen sets and fuzzy (r,s)-semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense and then we investigate some of their characteristic properties.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member μ of I^X is called a fuzzy set of X. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\tilde{1} - \mu$. All other notations are standard notations of

접수일자: 2003년 5월 29일 완료일자: 2004년 3월 8일 fuzzy set theory.

Let X be a nonempty set. An intuitionistic fuzzy set A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A \colon X \longrightarrow I$ and $\gamma_A \colon X \longrightarrow I$ denote the degree of membership and the degree of non-membership, respectively, and $\mu_A + \gamma_A \leq \tilde{1}$.

Obviously every fuzzy set μ on X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

Definition 2.1 [1] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets on X. Then

- (1) $A \subseteq B$ iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.
- (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^c = (\gamma_A, \mu_A)$.
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B)$.
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $0_{\sim} = (\tilde{0}, \tilde{1})$ and $1_{\sim} = (\tilde{1}, \tilde{0})$.

Let f be a map from a set X to a set Y. Let $A=(\mu_A,\gamma_A)$ be an intuitionistic fuzzy set of X and $B=(\mu_B,\gamma_B)$ an intuitionistic fuzzy set of Y. Then:

(1) The image of A under f, denoted by f(A) is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$ is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

A smooth fuzzy topology on X is a map $T: I^X \rightarrow I$ which satisfies the following properties:

(1)
$$T(\tilde{0}) = T(\tilde{1}) = 1$$
.

- (2) $T(\mu_1 \wedge \mu_2) \geq T(\mu_1) \wedge T(\mu_2)$.
- (3) $T(\vee \mu_i) \geq \wedge T(\mu_i)$.

The pair (X, T) is called a *smooth fuzzy topological* space.

An intuitionistic fuzzy topology on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0_{\sim}, 1_{\sim} \in T$.
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for all i, then $\bigcup A_i \in T$.

The pair (X, T) is called an *intuitionistic fuzzy topological space*.

Let I(X) be a family of all intuitionistic fuzzy sets of X and let $I \otimes I$ be the set of the pair (r,s) such that $r,s \in I$ and $r+s \leq 1$.

Definition 2.2 [5] Let X be a nonempty set. An in-tuitionistic fuzzy topology in Sostak's sense (SoIFT for short) $\tau = (\tau_1, \tau_2)$ on X is a map $\tau : I(X) \to I \otimes I$ which satisfies the following properties:

- (1) $\tau_1(0_{\sim}) = \tau_1(1_{\sim}) = 1$ and $\tau_2(0_{\sim}) = \tau_2(1_{\sim}) = 0$.
- (2) $\tau_1(A \cap B) \ge \tau_1(A) \wedge \tau_1(B)$ and $\tau_2(A \cap B) \le \tau_2(A) \vee \tau_2(B)$.
- (3) $\tau_1(\cup A_i) \ge \wedge \tau_1(A_i)$ and $\tau_2(\cup A_i) \le \vee \tau_2(A_i)$.

The $(X,\tau)=(X,\tau_1,\tau_2)$ is said to be an *intuitionistic* fuzzy topological space in Sostak's sense (SoIFTS for short). Also, we call $\tau_1(A)$ a gradation of openness of A and $\tau_2(A)$ a gradation of nonopenness of A.

Definition 2.3 [8] Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-open if $\tau_1(A) \ge r$ and $\tau_2(A) \le s$,
- (2) fuzzy (r, s)-closed if $\tau_1(A^c) \ge r$ and $\tau_2(A^c) \le s$.

Definition 2.4 [8] Let (X, τ_1, τ_2) be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s) -interior is defined by

$$\operatorname{int}(A,r,s) = \bigcup \left\{ B \in I(X) \, | \, A \supseteq B, \right.$$
 $B \text{ is fuzzy } (r,s) \text{--open} \right\}$

and the fuzzy (r,s)-closure is defined by

$$\operatorname{cl}(A, r, s) = \bigcap \{B \in I(X) | A \subseteq B, B \text{ is fuzzy } (r, s) - \operatorname{closed} \}.$$

The operators $\operatorname{int}: I(X) \times l \otimes I \to I(X)$ and $\operatorname{cl}: I(X) \times l \otimes I \to I(X)$ are called the *fuzzy interior operator* and *fuzzy closure operator* in (X, τ_1, τ_2) , respectively.

Lemma 2.5 [8] For an intuitionistic fuzzy set A in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$,

- (1) $int(A, r, s)^c = cl(A^c, r, s).$
- (2) $\operatorname{cl}(A, r, s)^c = \operatorname{int}(A^c, r, s).$

Let (X,τ) be an intuitionistic fuzzy topological space in Sostak's sense. Then it is easy to see that for each $(r,s)\in I\otimes I$, the family $\tau_{(r,s)}$ defined by

$$\tau_{(r,s)} = \{A \in I(X) | \tau_1(A) \ge r \text{ and } \tau_2(A) \le s\}$$

is an intuitionistic fuzzy topology on X.

Let (X,T) be an intuitionistic fuzzy topological space and $(r,s) \in I \otimes I$. Then the map $T^{(r,s)}: I(X) \rightarrow I \otimes I$ defined by

$$T^{(r,s)}(A) = \begin{cases} (1,0) & \text{if } A = 0_{\sim}, 1_{\sim}, \\ (r,s) & \text{if } A \in T - \{0_{\sim}, 1_{\sim}\}, \\ (0,1) & \text{otherwise} \end{cases}$$

becomes an intuitionistic fuzzy topology in Sostak's sense on X.

3. Fuzzy (r,s) -semiopen sets

Definition 3.1 Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r,s)-semiopen if there is a fuzzy (r,s)-open set B in X such that $B \subseteq A \subseteq \operatorname{cl}(B,r,s)$,
- (2) fuzzy (r,s)-semiclosed if there is a fuzzy (r,s)-closed set B in X such that $int(B,r,s) \subseteq A \subseteq B$.

It is obvious that every fuzzy (r,s)-open ((r,s)-closed) set is a fuzzy (r,s) semiopen ((r,s)-semiclosed) set but the converse need not be true which is shown by the following example.

Example 3.2 Let $X = \{x, y\}$ and let A_1 and A_2 be intuitionistic fuzzy set of X defined as

$$A_1(x) = (0.6, 0.3), A_1(y) = (0.3, 0.5);$$

and

$$A_2(x) = (0.8, 0.1), A_2(y) = (0.5, 0.4).$$

Define $\tau: I(X) \to I \otimes I$ by

$$\tau(A) = (\tau_1(A), \tau_2(A)) = \begin{cases} (1,0) & \text{if } A = 0, 1, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly (τ_1, τ_2) is a SoIFT on X. The intuitionistic fuzzy set A_2 is $(\frac{1}{2}, \frac{1}{3})$ -semiopen which is not $(\frac{1}{2}, \frac{1}{3})$

-open. Also, A_2^c is $(\frac{1}{2}, \frac{1}{3})$ -semiclosed which is not

$$(\frac{1}{2}, \frac{1}{3})$$
-closed.

Theorem 3.3 Let A be an intuitionistic fuzzy set in a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a fuzzy (r, s)-semiopen set.
- (2) A^c is a fuzzy (r, s)-semiclosed set.
- (3) $\operatorname{cl}(\operatorname{int}(A, r, s), r, s) \supseteq A$.
- (4) $\operatorname{int}(\operatorname{cl}(A^c, r, s), r, s) \subseteq A^c$.

Proof. (1) \rightarrow (3) Let A be a fuzzy (r, s)-semiopen set of X. Then there is a fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq \operatorname{cl}(B, r, s)$. So

$$B = \operatorname{int}(B, r, s) \subseteq \operatorname{int}(A, r, s).$$

Hence

$$A \subseteq \operatorname{cl}(B, r, s) \subseteq \operatorname{cl}(\operatorname{int}(A, r, s)).$$

(3) \rightarrow (1) Let $\operatorname{cl}(\operatorname{int}(A,r,s),r,s)\supseteq A$ and take $B=\operatorname{int}(A,r,s)$. Then B is a fuzzy (r,s)-open set and

$$B = \operatorname{int}(A, r, s) \subseteq A \subseteq \operatorname{cl}(\operatorname{int}(A, r, s), r, s)$$
$$= \operatorname{cl}(B, r, s).$$

Thus A is a fuzzy (r, s)-semiopen set.

- (2) \leftrightarrow (4) It is similar to the proof of (1) \leftrightarrow (3).
- $(3) \leftrightarrow (4)$ It follows from Lemma 2.5.

Theorem 3.4 Let (X, τ_1, τ_2) be a SoIFTS and $(r, s) \in I \otimes I$.

- (1) If A is fuzzy (r, s)-semiopen and $int(A, r, s) \subseteq B \subseteq cl(A, r, s)$, then B is fuzzy (r, s)-semiopen.
- (2) If A is fuzzy (r, s)-semiclosed and int(A, r, s) $\subseteq B \subseteq cl(A, r, s)$, then B is fuzzy (r, s)-semiclosed.

Proof. (1) Let A be a fuzzy (r,s)-semiopen set and $\operatorname{int}(A,r,s)\subseteq B\subseteq\operatorname{cl}(A,r,s)$. Then there is a fuzzy (r,s)-open set C such that $C\subseteq A\subseteq\operatorname{cl}(C,r,s)$. It follows that

$$C = \operatorname{int}(C, r, s) \subseteq \operatorname{int}(A, r, s) \subseteq A \subseteq \operatorname{cl}(A, r, s)$$

$$\subseteq \operatorname{cl}(\operatorname{cl}(C, r, s), r, s) = \operatorname{cl}(C, r, s)$$

and hence

$$C \subseteq \operatorname{int}(A, r, s) \subseteq B \subseteq \operatorname{cl}(A, r, s) \subseteq \operatorname{cl}(C, r, s)$$
.

Thus B is a fuzzy (r, s)-semiopen set.

(2) Similar to (1).

Theorem 3.5 Let (X, τ_1, τ_2) be a SoIFTS and $(r, s) \in I \otimes I$.

- (1) If $\{A_i\}$ is a family of fuzzy (r, s)-semiopen sets of X, then $\bigcup A_i$ is fuzzy (r, s)-semiopen.
- (2) If $\{A_i\}$ is a family of fuzzy (r, s)-semiclosed sets of X, then $\bigcap A_i$ is fuzzy (r, s)-semiclosed.

Proof. (1) Let $\{A_i\}$ be a collection of fuzzy (r,s) -semiopen sets. Then for each i, there is a fuzzy (r,s) -open set B_i such that $B_i \subseteq A_i \subseteq \operatorname{cl}(B_i, r, s)$. Since $\tau_1(\bigcup B_i) \ge \wedge \tau_1(B_i) \ge r$ and $\tau_2(\bigcup B_i) \le \vee \tau_2(B_i) \le s$, $\bigcup B_i$ is a fuzzy (r,s)-open set. Moreover,

$$\bigcup B_i \subseteq \bigcup A_i \subseteq \bigcup \operatorname{cl}(B_i, r, s) \subseteq \operatorname{cl}(\bigcup B_i, r, s).$$

Hence $\bigcup A_i$ is a fuzzy (r, s)-semiopen set.

(2) It follows from (1) using Theorem 3.3.

Definition 3.6 Let (X, τ_1, τ_2) be a SoIFTS. For each $(r, s) \in I \otimes I$ and for each $A \in I(X)$, the fuzzy (r, s)-semiinterior is defined by

$$sint(A, r, s) = \bigcup \{B \in I(X) \mid A \supseteq B, \\ B \text{ is fuzzy } (r, s) - semiopen\}$$

and the fuzzy (r,s)-semiclosure is defined by

$$\operatorname{scl}(A, r, s) = \bigcap \{ B \in I(X) | A \subseteq B, \\ B \text{ is fuzzy } (r, s) - \operatorname{semiclosed} \}.$$

Obviously $\operatorname{scl}(A,r,s)$ is the smallest fuzzy (r,s) -semiclosed set which contains A and $\operatorname{sint}(A,r,s)$ is the greatest fuzzy (r,s)-semiopen set which is contained in A. Also, $\operatorname{scl}(A,r,s)=A$ for any fuzzy (r,s)-semiclosed set A and $\operatorname{sint}(A,r,s)=A$ for any fuzzy (r,s)-semiopen set A. Moreover, we have

$$int(A, r, s) \subseteq sint(A, r, s) \subseteq A$$
$$\subseteq scl(A, r, s) \subseteq cl(A, r, s).$$

Also, we have the following results:

- (1) $scl(0_{\sim}, r, s) = 0_{\sim}, scl(1_{\sim}, r, s) = 1_{\sim}.$
- (2) $\operatorname{scl}(A, r, s) \supseteq A$.
- (3) $\operatorname{scl}(A \cup B, r, s) \supseteq \operatorname{scl}(A, r, s) \cup \operatorname{scl}(B, r, s)$.
- $(4) \operatorname{scl}(\operatorname{scl}(A, r, s), r, s) = \operatorname{scl}(A, r, s).$
- (5) $sint(0_{\sim}, r, s) = 0_{\sim}, sint(1_{\sim}, r, s) = 1_{\sim}.$
- (6) $sint(A, r, s) \subseteq A$.
- (7) $\operatorname{sint}(A \cap B, r, s) \subseteq \operatorname{sint}(A, r, s) \cap \operatorname{sint}(B, r, s)$.
- (8) $\operatorname{sint}(\operatorname{sint}(A, r, s), r, s) = \operatorname{sint}(A, r, s).$

Theorem 3.7 For an intuitionistic fuzzy set A of a SoIFTS (X, τ_1, τ_2) and $(r, s) \in I \otimes I$, we have:

- (1) $sint(A, r, s)^c = scl(A^c, r, s)$.
- (2) $scl(A, r, s)^c = sint(A^c, r, s)$.

Proof. (1) Since $sint(A, r, s) \subseteq A$ and sint(A, r, s) is fuzzy (r, s)-semiopen in X, $A^c \subseteq sint(A, r, s)^c$ and $sint(A, r, s)^c$ is fuzzy (r, s)-semiclosed in X. Thus

$$\operatorname{scl}(A^c, r, s) \subseteq \operatorname{scl}(\operatorname{sint}(A, r, s)^c, r, s)$$
$$= \operatorname{sint}(A, r, s)^c.$$

Conversely, since $A^c \subseteq \operatorname{scl}(A^c, r, s)$ and $\operatorname{scl}(A^c, r, s)$ is fuzzy (r, s)-semiclosed in X, $\operatorname{scl}(A^c, r, s)^c \subseteq A$ and

 $\operatorname{scl}(A^c, r, s)^c$ is fuzzy (r, s)-semiopen in X. Thus

$$\operatorname{scl}(A^{c}, r, s)^{c} = \operatorname{sint}(\operatorname{scl}(A^{c}, r, s)^{c}, r, s)$$
$$\subseteq \operatorname{sint}(A, r, s)$$

and hence $\operatorname{sint}(A, r, s)^c \subseteq \operatorname{scl}(A^c, r, s)$.

(2) Similar to (1).

Definition 3.8 Let $f:(X,\tau_1,\tau_2) \to (Y,w_1,w_2)$ be a mapping from a SoIFTS X to another SoIFTS Y and $(r,s) \in I \otimes I$. Then f is said to be

- (1) fuzzy (r, s)-semicontinuous if $f^{-1}(B)$ is a fuzzy (r, s)-semiopen set of X for each fuzzy (r, s)-open set B of Y.
- (2) fuzzy (r,s)-semiopen if f(A) is a fuzzy (r,s)-semiopen set of Y for each fuzzy (r,s)-open set A of X,
- (3) fuzzy (r, s)-semiclosed if f(A) is a fuzzy (r, s)-semiclosed set of Y for each fuzzy (r, s)-closed set A of X.

It need not be true that f and g are fuzzy (r,s) -semicontinuous ((r,s)-semicopen and (r,s)-semiclosed, respectively) mappings then so is $g \circ f$. But we have the following theorem.

Theorem 3.9 Let (X, τ_1, τ_2) , (Y, w_1, w_2) and (Z, σ_1, σ_2) be SoIFTSs and let $f: X \to Y$ and $g: Y \to Z$ be mappings and $(r, s) \in I \otimes I$. Then the following statements are true:

- (1) If f is a fuzzy (r, s)-semicontinuous mapping and g is a fuzzy (r, s)-continuous mapping, then $g \circ f$ is a fuzzy (r, s)-semicontinuous mapping.
- (2) If f is a fuzzy (r,s)-open mapping and g is a fuzzy (r,s)-semiopen mapping, then $g \circ f$ is a fuzzy (r,s)-semiopen mapping.
- (3) If f is a fuzzy (r, s)-closed mapping and g is a fuzzy (r, s)-semiclosed mapping, then $g \circ f$ is a fuzzy (r, s)-semiclosed mapping.

Proof. Straightforward.

Theorem 3.10 Let $f:(X,\tau_1,\tau_2) \to (Y,w_1,w_2)$ be a mapping and $(r,s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy (r, s)-semicontinuous mapping.
- (2) $f^{-1}(B)$ is a fuzzy (r, s)-semiclosed set of X for each fuzzy (r, s)-closed set B of Y.
- (3) $\operatorname{int}(\operatorname{cl}(f^{-1}(B), r, s), r, s) \subseteq f^{-1}(\operatorname{cl}(B, r, s))$ for each intuitionistic fuzzy set B of Y.
- (4) $f(\operatorname{int}(\operatorname{cl}(A,r,s),r,s)) \subseteq \operatorname{cl}(f(A),r,s)$ for each intuitionistic fuzzy set A of X.

Proof.(1) \leftrightarrow (2) It is obvious.

(2) \rightarrow (3) Let *B* be any intuitionistic fuzzy set of *Y*. Then cl(B, r, s) is a fuzzy (r, s)-closed set of *Y*. By

(2), $f^{-1}(\operatorname{cl}(B, r, s))$ is a fuzzy (r, s)-semiclosed set of X. By Theorem 3.3,

$$f^{-1}(cl(B, r, s)) \supseteq int(cl(f^{-1}(cl(B, r, s)), r, s), r, s)$$

 $\supseteq int(cl(f^{-1}(B), r, s), r, s).$

(3) \rightarrow (4) Let A be any intuitionistic fuzzy set of X. Then f(A) is an intuitionistic fuzzy set of Y. By (3),

$$f^{-1}(\operatorname{cl}(f(A), r, s)) \supseteq \operatorname{int}(\operatorname{cl}(f^{-1}f(A), r, s), r, s)$$

$$\supseteq \operatorname{int}(\operatorname{cl}(A, r, s), r, s).$$

Hence

$$cl(f(A), r, s) \supseteq ff^{-1}(cl(f(A), r, s))$$
$$\supseteq f(int(cl(A, r, s), r, s)).$$

(4) \rightarrow (2) Let B be any fuzzy (r,s)-closed set of Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set of X. By (4),

$$f(\operatorname{int}\left(\operatorname{cl}\left(f^{-1}\left(B\right),r,s\right),r,s\right)) \subseteq \operatorname{cl}\left(ff^{-1}\left(B\right),r,s\right)$$
$$\subseteq \operatorname{cl}\left(B,r,s\right) = B$$

and hence

$$\inf(\operatorname{cl}(f^{-1}(B), r, s), r, s)$$

$$\subseteq f^{-1}f(\operatorname{int}(\operatorname{cl}(f^{-1}(B), r, s), r, s))$$

$$\subseteq f^{-1}(B).$$

Thus $f^{-1}(B)$ is a fuzzy (r, s)-semiclosed set of X.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems 20 (1986), 87-90.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems 49 (1992), 237–242.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81-89.
- [5] D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological sapces in Sostak's sense, BUSEFAL 67 (1996), 67-76.
- [6] D. Coker and A. Haydar Es, On fuzzy compactness in intuitionistic fuzzy toplogical sapces, J. Fuzzy Math. 3 (1995), 899 909.
- [7] H. Gurcay, D. Coker and A. Haydar Es, *On fuzzy continuity in intuitionistic fuzzy topological spaces*, J. Fuzzy Math. 5 (1997), 365–378.
- [8] E. P. Lee and Y. B. Im, *Mated fuzzy topological spaces*, J. of Fuzzy Logic and Intelligent Systems 11 (2001), 161-165.
- [9] A. A. Ramadan, *Smooth topological spaces*, Fuzzy Sets and Systems 48 (1992), 371-375.

퍼지 및 지능시스템학회 논문지 2004, Vol. 14, No. 2

- [10] A. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Mat. Palermo (Ser. II) 11 (1985), 89–103.
- [11] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338–353.

저 자 소 개

이은표(Eun Pyo Lee) 한국퍼지 및 지능시스템학회 논문지 제 12 권 제3호 참조

현재:서남대학교 수학과