SYMMETRIES OF SOME NUMERICAL SEMIGROUPS

  • Published : 2004.01.01

Abstract

Let $S_{i}$ be the numerical semigroup generated by the set ${a,\;a{\;}+{\;}d,{\cdots},\;a+(i{\;}-{\;}l)d,\;a+(i{\;}+{\;}l)d,{\cdots},{\;}a{\;}+{\;}rd}$. In this paper, we will formulate the number of nonmembers of each set $S_{i}$ and find the if and only if conditions under which $S_1$ and $S_{r-1}$ are symmetric.

Keywords

References

  1. Memoirs of A.M.S. v.125 no.598 Maximality Propertities in Numerical semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains Barucci, V.;Dobbs, D.;Fontana, M.
  2. Pacific J. of Math. v.191 Numerical Semigroups Generated by Intervals Garcia-Sanchez, P.;Rosales, J.
  3. Israel J. Math. v.15 On linear forms whose coefficients are in arithmetic progression Grant, D.
  4. Kangweon-kyungki Math. Jour. v.10 no.2 The Frobenius numbers of some numerical semigroups Lee, H. N.;Song, B. C.
  5. J. Number Theory v.4 no.598 Representations of integers by linear forms in non-negative integers Nijenhuis, A.;Wilf, H.
  6. Arch. Math. v.69 The linear diophantine problem of Frobenius for subsets of arithmetic sequences Ritter, S. M.
  7. J. Number Theory v.69 On a linear diophantine problem of Frobenius: Extending the basis Ritter, S. M.
  8. Proc. Amer. Math. Soc. v.7 Notes on linear forms Roberts, J. B.
  9. J. reine angew. Math. v.293;294 On the linear diophantine problem of Frobenius Selmer, E. S.