나방류에 대한 thiodicarb의 살충활성

Insecticidal activity of thiodicarb on lepidopterous pests

  • 최유미 (충북대학교 농과대학 식물의학과) ;
  • 김길하 (충북대학교 농과대학 식물의학과)
  • Choi, Yu-Mi (Dept. of Plant Medicine, College of Agriculture, Chungbuk National University) ;
  • Kim, Gil-Hah (Dept. of Plant Medicine, College of Agriculture, Chungbuk National University)
  • 발행 : 2004.03.30

초록

본 연구는 6종 나방류(멸강나방, 배추좀나방, 목화바둑명나방, 파밤나방, 담배나방, 담배거세미나방) 대한 유충영기별 thiodicarb의 살충활성을 조사하였으며, 살충효과 구명을 위하여 효소활성(esterase, acetylcholinesterase, glutathione S-transferase)등을 검토하였다. 이 약제는 6종의 나방류 어린유충에 대해서 높은 살충효과를 나타내었으나, 노숙유충에 대한 살충효과는 상대적으로 낮았고, 발현속도는 느렸다. 담배거세미나방을 대상으로 한 효소활성저해 실험에서 acetylcholinesterase와 glutathione S-transferase 활성을 저해하였으나, esterase 활성을 저해하지는 않았다.

A series of experiments was conducted to determine the toxicities of thiodicarb on the six lepidopterous pests (Pseudaletia separata, Plutella xylostella, Palpita indica, Spodoptera exigua, Helicoverpa assulta, Spodoptera litura) and to elucidate factors insecticidal effects mechanism of thiodicarb. Thiodicarb was very effective against six lepidopterous young larvae, but less effective to the old larvae and it acted slowly. Thiodicarb inhibited acetylcholinesterase and glutathione S-transferase activities, but not inhibit esterase activity.

키워드

참고문헌

  1. Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide J. Econ. Entomol 18:265-267
  2. Baker, J. E., J. A. Fabrick and K. Y. Zhu (1998) Characterization of esterases in malathion-resistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandrae. Insect. Mol. Biol. 28:1039-1050 https://doi.org/10.1016/S0965-1748(98)00095-2
  3. Brattsten, L. B. and R. L. Metcalf (1973) Age-dependent variations in the response of several species of diptera to nsecticidal chemicals. Pestic. Biochem. Physiol. 3:189-198
  4. Coats, J. R. (1983). Insecticide mode of action. Academic Press. p.457
  5. Ellman, G. L., K. D. Coutney, V. Andres, J. and B. C. Featherstone (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88-95
  6. Gunning, R. V., G. D., Moores and A. L. Devonshire (1996) Insensitive acetylcholinesterase and resistance to thiodicarb in Austalian Helicoverpa amigera (Lepidoptera : Noctuidae). Pestic. Biochem. Physiol. 55:21-28
  7. Habig, W. H., M. J. Pabst and W. B. Jakoby. 1974. Glutathione S-transferases: The firrst enzymatic step in mercapturic acid formation J. Biol. Chem. 249:7130-7139
  8. Ketterman, A. J., P. Prommeenate, C. Boonchauy, U. Chanama, S. Leetachewa, N. Promtet and L. Prapanthadara (2001). Single antino acid change outside the active site significantly affect activity of glutathione S-transferase. Insect Biochem. Mol. Biol. 31:65-74
  9. Kim, G. H. , S. J. Moon, Y. D. Chang and K. Y. Cho (1998) Property of action of new insecticide, flupyrazofos against diamondback moth, Plutella xylostella. Korean J. Pestic. Sci. 2:117-125
  10. Maa, W. C. and S., Liao (2000) Culture-dependent variation in esterase Isozymes and malathion susceptibility of diamondback moth, Plutella xylostella L. Zoll. Studies.39:375 - 386
  11. Scott, J. A. (1995) The molecular genetics of resistance: resistance as a response to stress. Flor. Entomol. 78:399-414
  12. Tomlin, C. D. S. (2000) The pesticide manual. BCPC. p.1343
  13. Van Asperen, K. J. (1962) A study of housefly esterase by means of 8 sensitive colorimetric method. J. Insect Pathol. 8:401-416
  14. 농약사용지침서 (2003). 농약공업협회. p.458