DOI QR코드

DOI QR Code

Effects of Combination of Nitrate with ${\beta}$1-4 Galacto-oligosaccharides and Yeast (Candida kefyr) on Methane Emission from Sheep

  • Sar, C. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Santoso, B. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Gamo, Y. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kobayashi, T. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Shiozaki, S. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Kimura, K. (Yakult Central Institute for Microbiological Research) ;
  • Mizukoshi, H. (Yakult Central Institute for Microbiological Research) ;
  • Arai, I. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine) ;
  • Takahashi, J. (Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine)
  • Received : 2003.05.21
  • Accepted : 2003.10.11
  • Published : 2004.01.01

Abstract

The objective of the present study was to determine whether ${\beta}$1-4 galacto-oligosaccharides (GOS) and Candida kefyr combined with nitrate as manipulators could suppress rumen methanogenesis without nitrate poisoning in sheep. Four rumen fistulated wethers were allocated to a $4{\times}4$ Latin square design. Nitrate (1.3 g $NaNO_3$ $Kg^{-0.75}$body weight) with and without GOS and Candida kefyr were administered into the rumen through fistula as a single dose 30 min after the morning meal. GOS and Candida kefyr were supplemented by sprinkling onto the feed and through rumen fistula, respectively. The four treatments consisted of saline, nitrate, nitrate plus GOS and nitrate plus GOS plus Candida kefyr. Physiological saline was used as the control treatment. Compared to saline treatment, the administration of nitrate alone resulted in a very marked decrease in rumen methanogenesis and an increase in rumen and plasma nitrite production and blood methaemoglobin formation consequently causing a decline in oxygen consumption, carbon dioxide production and metabolic rate. When compared to nitrate alone, the simultaneous administration of nitrate with GOS decreased nitrite accumulation in rumen and plasma and nitrate-induced methaemoglobin, while retaining low methane production. However, GOS could not fully restore metabolic parameters reduced by nitrate. When compared to the simultaneous administration of nitrate with GOS, the simultaneous administration of nitrate with GOS plus Candida kefyr lowered rumen methanogenesis to a negligible level, but did not decrease rumen and plasma nitrite accumulation as well as blood methaemoglobin formation. Thus, these results suggest that combination of nitrate with GOS may be a potent manipulator to suppress rumen methanogenesis with abating the hazards of nitratenitrite toxicity in ruminants.

Keywords

References

  1. Allison, M. J. and C. A. Reddy. 1990. Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. Vet. Hum. Toxicol. 32(5):248-256.
  2. Asanuma, N. and T. Hino. 2002. Regulation of fermentation in a ruminal bacterium, Streptococcus bovis, with special reference to rumen acidosis. Anim. Sci. J. 73(5):313-325.
  3. Bodansky, O. 1951. Methaemoglobinemia and methaemoglobinproducing compounds. Pharmacol. Rev. 3:144-196.
  4. Brouwer, E. 1960. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat metabolised in ruminants from data on gaseous exchange and urine-N. In (Ed. G. Thorbek and H. Aersøe). Energy Metabolism. EAAP Publication No. 8, Copenhagen, pp.182-192.
  5. Dawson, K. A., K. E. Newman and J. A. Boling. 1990. Effects of microbial supplements containing yeast and lactobacilli on roughage-fed ruminal microbial activities. J. Anim. Sci.68:3392-3398.
  6. Evelyn, K. A. and H. T. Malloy. 1938. Microdetermination of oxyhaemoglobin, methaemoglobin and sulfhaemoglobin in single sample of blood. J. Biol. Chem. 126:655-662.
  7. Gerald, W. H., E. B. George and S. L. Keith. 1984. Preliminary studies on the effect of yeast culture supplementation on nitrate/nitrite induced methemoglobinemia in lambs and steers. Vet. Hum. Toxicol. 26(4):309-313.
  8. Gamo, Y., C. Sar, M. Mii, X. G. Zhou, B. Santoso, I. Arai, K. Kimura and J. Takahashi. 2001. Effects of lactic acid bacteria, yeasts and $\beta$1-4 galacto-oligosaccharide supplementation on in vitro rumen methane production. In (Ed. J. Takahashi and B. A. Young). Greenhouse Gases and Animal Agriculture. Proceedings of the 1st International Conference on Greenhouse Gas and Animal Agriculture, 7-11 November, Obihiro, Hokkaido, Japan, 2001, pp. 371-374.
  9. Gibson, G. R., S. Macfarlane and G. T. Macfarlane. 1993. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 12:117-125.
  10. Gottshalk, G. 1986. Bacterial Metabolism, 2nd edn. Springer Verlag, Berlin.
  11. Horwitz, W. 1975. Official methods of Analysis of the Association of Official Analytical Chemists, 12th edn. AOAC, Washington, DC, pp. 132-133.
  12. IPCC (Intergovermental Panel on Climate Change). 1994. In (Ed. J. H. Houghton, L. G. Meria Filho, B. A. Callander, H. Haites, N. Harris and K. Maskell). Cambridge University Press, New York, pp. 25-27.
  13. Iwamoto, M., N. Asanuma and T. Hino. 2001. Effects of pH and electron donors on nitrate and nitrite reduction in rumina microbiota. Anim. Sci. J. 72 (2):117-125.
  14. Joblin, K. N. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust. J. Agric. Res. 50:1307-1313. https://doi.org/10.1071/AR99004
  15. John, A., G. Barnett and I. B. R. Bowman. 1957. In vitro studies on the reduction of nitrate by rumen liquor. J. Sci. Food Agric. 8:243-248.
  16. Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18:1783-1787. https://doi.org/10.1139/m72-279
  17. Kikuchi-Hayakawa, H., M. Kimura and M. Watanuki. 1997. Adaptation of rate of organic acid production of hindgut bacteria to chronic intake of galactooligosaccharide in the rat. J. Nutr. Sci. Vitaminol. 43:357-368.
  18. Klieve, A. V. and R. S. Hegarty. 1999. Opportunities of biological control of ruminant methanogenesis. Aust. J. Agric. Res. 50:1315-1319.
  19. Matsumoto, K., Y. Kobayashi, S. Ueyama, T. Watanabe, R. Tanaka, T. Kan, A. Kuroda and Y. Sumihara. 1990. Galactooligosaccharides. In (Ed. T. Nakanuki). Japanese Technology Reviews. Gordon and Breach Science Publishers, Tokyo, pp. 90-106.
  20. Moss, A. R., J. P. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253 (Review article).
  21. Prins, R. A., W. Cline-Theil, A. Malestein and G. H. M. Counotte. 1980. Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl. Environ. Microbiol. 40:163-165.
  22. Rowland, I. R. and R. Tanaka. 1993. The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. J. Appl. Bacteriol. 74:667-674.
  23. Sahoo, B., M. L. Saraswat, N. Haque and M. Y. Khan. 2000. Energy balance and methane production in sheep fed chemically treated wheat straw. Small Rum. Res. 35:13-19.
  24. Santoso, B., S. Kume, K. Nonaka, K. Kimura, H. Mizukoshi, Y. Gamo and J. Takahashi. 2003a. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without Galacto-oligosaccharides supplementation. Asian-Aust. J. Anim. Sci. 16(4):534-540.
  25. Santoso, B., S. Kume, K. Nonaka, Y. Gamo, K. Kimura and J. Takahashi. 2003b. Influence of $\beta$1-4 galacto-oligosaccharides supplementation on nitrogen utilization, rumen fermentation, and nitrogen supply in dairy cows fed silage. Asian-Aust. J. Anim. Sci. 16(8):1137-1142.
  26. Sapiro, M. L., S. Hoflund, R. Clark and J. I. Quin. 1949. Studies on the alimentary tract of the merino sheep in South Africa. XVI- The fate of nitrate in ruminal ingesta as studied in vitro. Onderstepoort J. Vet. Sci. Anim. Indust. 22 (2):357-372.
  27. Stewart, C. S. and M. P. Bryant. 1988. The Rumen Bacteria. In (Ed. P. N. Hobson). The Rumen Microbial Ecosystem. Elsevier Applied Science, London and New York, pp. 21-75.
  28. Takahashi, J. and B. A. Young. 1991. Prophylactic effect of Lcysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep. Anim. Feed Sci. Technol. 35:105-113.
  29. Takahashi, J. and B. A. Young. 1992. The modulation of nitrateenhanced hypothermia by sulphur compounds in cold-exposed sheep. Anim. Feed Sci. Technol. 39:347-355.
  30. Takahashi, J., M. Ikeda, S. Matsuoka and H. Fujita. 1998. Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep. Anim. Feed Sci. Technol. 74:273-280.
  31. Takahashi, J. 2001. Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci. 14:131-135.
  32. Takahashi, J., M. Mii, Y. Gamo, K. Kimura, K. Umetsu, T. Kishimoto and I. Arai. 2002. Nutritional options for abatement of methane emission from farm animals. In: (Ed. H. K. Ong, I. Zulkifli, T. P. Tee and J. B. Liang). Global Perspective in Livestock Waste Management. Proceeding of the Fourth International Livestock Waste Management Symposium and Technology Expo., 19-23 May, Penang, Malaysia, 2002, pp.149-155.
  33. Tanaka, R., H. Akayama, M. Morotomi, T. Kuroshima, S. Ueyama, K. Matsumoto, A. Kuroda and M. Mutai. 1983. Effect of administration of TOS and Bifidobacterium breve 4006 on human fecal flora. Bifidobacteria Microflora 2:17-24.
  34. Trovatelli, L. D. and D. Matteuzzi. 1976. Presence of Bifidobacteria in the rumen of calves fed different rations. Appl. Environ. Microbiol. 32(4):470-473.
  35. Yanahira, S., T. Kobayashi, T. Suguri, M. Nakakoshi, S. Miura, H. Ishikawa and I. Nakajima. 1995. Formation of oligosaccharides from lactose by Bacillus circulans $\beta$- galactosidase. Biosci. Biotech. Biochem. 59(6):1021-1026.

Cited by

  1. vol.56, pp.8, 2005, https://doi.org/10.1071/AR04294
  2. Effect of ruminal administration of Escherichia coli wild type or a genetically modified strain with enhanced high nitrite reductase activity on methane emission and nitrate toxicity in nitrate-infused sheep vol.94, pp.05, 2005, https://doi.org/10.1079/BJN20051517
  3. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions vol.184, pp.4, 2012, https://doi.org/10.1007/s10661-011-2090-y
  4. Use of nitrate and Propionibacterium acidipropionici to reduce methane emissions and increase wool growth of Merino sheep vol.54, pp.10, 2014, https://doi.org/10.1071/AN14329
  5. ruminal fermentation and microbial population vol.101, pp.4, 2016, https://doi.org/10.1111/jpn.12508
  6. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00228
  7. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction1 vol.83, pp.3, 2005, https://doi.org/10.2527/2005.833644x
  8. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro vol.118, pp.3, 2004, https://doi.org/10.1016/j.anifeedsci.2004.10.004
  9. Effect of Live Yeast and Mannan-oligosaccharides on Performance of Early-lactation Holstein Dairy Cows vol.22, pp.6, 2004, https://doi.org/10.5713/ajas.2009.80561
  10. Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan vol.24, pp.2, 2004, https://doi.org/10.5713/ajas.2011.r.03
  11. Antimethanogenic effects of nitrate supplementation in cattle: A meta-analysis vol.103, pp.12, 2004, https://doi.org/10.3168/jds.2020-18541