DOI QR코드

DOI QR Code

Mitochondrial Damage and Metabolic Compensatory Mechanisms Induced by Hyperoxia in the U-937 Cell Line

  • Scatena, Roberto (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Messana, Irene (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Martorana, Giuseppe Ettore (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Gozzo, Maria Luisa (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Lippa, Silvio (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Maccaglia, Alessandro (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Bottoni, Patrizia (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Vincenzoni, Federica (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Nocca, Giuseppina (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Castagnola, Massimo (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore) ;
  • Giardina, Bruno (Istituto di Biochimica e Biochimica Clinica, Facolta di Medicina e Chirurgia, Universita Cattolica del Sacro Cuore)
  • Published : 2004.07.31

Abstract

Experimental hyperoxia represents a suitable in vitro model to study some pathogenic mechanisms related to oxidative stress. Moreover, it allows the investigation of the molecular pathophysiology underlying oxygen therapy and toxicity. In this study, a modified experimental set up was adopted to accomplish a model of moderate hyperoxia (50% $O_2$, 96 h culture) to induce oxidative stress in the human leukemia cell line, U-937. Spectrophotometric measurements of mitochondrial respiratory enzyme activities, NMR spectroscopy of culture media, determination of antioxidant enzyme activities, and cell proliferation and differentiation assays were performed. The data showed that moderate hyperoxia in this myeloid cell line causes: i) intriguing alterations in the mitochondrial activities at the levels of succinate dehydrogenase and succinate-cytochrome c reductase; ii) induction of metabolic compensatory adaptations, with significant shift to glycolysis; iii) induction of different antioxidant enzyme activities; iv) significant cell growth inhibition and v) no significant apoptosis. This work will permit better characterization the mitochondrial damage induced by hyperoxia. In particular, the data showed a large increase in the succinate cytochrome c reductase activity, which could be a fundamental pathogenic mechanism at the basis of oxygen toxicity.

Keywords

References

  1. Allen, C. B. and White, C. W. (1988) Glucose modulates cell death due to normobaric hyperoxia by maintaining cellular ATP. Am. J. Physiol. 274, L159-L164.
  2. Brambilla, L., Cairo, G., Sestili, P., O'Donnel, V. B., Azzi, A. and Cantoni, O. (1997) Mitochondrial respiratory chain deficiency leads to overexpression of antioxidant enzymes. FEBS Lett. 418, 247-250. https://doi.org/10.1016/S0014-5793(97)01393-8
  3. Byung, P. Y. (1994) Cellular defences against damage from reactive oxygen species. Physiol. Rev. 74, 139-162.
  4. De Baetselier, P. and Scrham, E. (1986) Luminescent bioassay based on macrophage cell lines. Methods Enzymol. 133, 507-530. https://doi.org/10.1016/0076-6879(86)33087-8
  5. Ehinger, M., Bergh, G., Olofsson, T., Baldetorp, B., Olsson, I. and Gullberg, U. (1996) Expression of the p53 tumor suppressor gene induces differentiation and promotes induction of differentiation by 1,25-dihydroxycholecalciferol in leukemic U-937 cells. Blood 87, 1064-1074.
  6. Florian, C. L., Pietsch, T., Noble, M. and Williams, S. R. (1997) Metabolic studies of human primitive neuroectodermal tumour cells by proton nuclear magnetic resonance spectroscopy. Br. J. Cancer 75, 1007-1013. https://doi.org/10.1038/bjc.1997.173
  7. Franek, W. R., Horowitz, S., Stansberry, L., Kazzaz, J. A., Koo, H. C., Li, Y., Arita, Y., Davis, J. M., Mantell, A. S., Scott, W. and Mantell, L. L. (2001) Hyperoxia inhibits oxidant-induced apoptosis in lung epithelial cells. J. Biol. Chem. 176, 569-575.
  8. Gardner, P. R., Nguyen, D. H. and White, C. W. (1994) Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cell and in rat lungs. Proc. Natl. Acad. Sci. USA 91, 12248-12252. https://doi.org/10.1073/pnas.91.25.12248
  9. Kazzaz, J. A, Jing, X., Palaia, T. A., Mantell, L., Fein, A. M. and Horowitz, S. (1996) Cellular oxygen toxicity. J. Biol. Chem. 271, 15182-15186. https://doi.org/10.1074/jbc.271.25.15182
  10. Lee, J. L., Jawed, A., Wiegand, G. W. and Choi, A. M. K. (1996) Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc. Natl. Acad. Sci. USA 93, 10393-10398. https://doi.org/10.1073/pnas.93.19.10393
  11. Li, Y., Zhang, W., Mantell, L. L., Kazzaz, J. A., Fein, A. M. and Horowitz, S. (1997) Nuclear factor $\kappa$B is activated by hyperoxia but does not protect from cell death. J. Biol. Chem. 272, 20646-20649. https://doi.org/10.1074/jbc.272.33.20646
  12. Lindsay, L., Oliver, S. J., Freeman, S. L., Josien, R., Krauss, A. and Kaplan, G. (2000) Modulation of hyperoxia-induced TNFalpha expression in the newborn rat lung by thalidomide and dexamethasone. Inflammation 24, 347-356. https://doi.org/10.1023/A:1007096931078
  13. McCord, J. M. (2000) The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652-659. https://doi.org/10.1016/S0002-9343(00)00412-5
  14. Nomura, K., Imai, H., Koumura, T., Arai, M. and Nakagawa, Y. (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J. Biol. Chem. 274, 29294-29302. https://doi.org/10.1074/jbc.274.41.29294
  15. O'Donnel, V. B., Spicher, S. and Azzi, A. (1995) Involvement of oxidants and oxidant generating enzymes in tumor necrosis factor mediated apoptosis: role of lipoxygenase pathway but not mitochondrial respiratory chain. Biochem. J. 310, 133-141.
  16. Ramachandra, S. and Studzinski, P. (1995) Morphological and biochemical criteria of apoptosis in Cell Growth and Apoptosis, Studzinski, G. P. (ed.), pp. 119-142, IRL Press, Oxford, UK.
  17. Rahman, I. (2003) Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J. Biochem. Mol. Biol. 36, 95-109. https://doi.org/10.5483/BMBRep.2003.36.1.095
  18. Schoonen, W. G. E., Wanamarta, A. H., Van der Klei-Van Moorsel. J. M., Jakobs, C. and Joenje, H. (1990) Respiratory failure and stimulation of glycolysis in Chinese hamster ovary cells exposed to normobaric hyperoxia. J. Biol. Chem. 265, 11118-11124.
  19. Shishodia, S. and Aggarwal, B. B. (2002) Nuclear factor- $\kappa$B activation: a question of life or death. J. Biochem. Mol. Biol. 35, 28-40. https://doi.org/10.5483/BMBRep.2002.35.1.028
  20. Simon, L. M., Axline, S. G. and Robin, E. D. (1978) The effect of hyperoxia on phagocytosis and pinocytosis in isolated pulmonary macrophages. Lab. Invest. 39, 541-546.
  21. Skehan, P. (1995) Assay of cell growth and cytoxicity in Cell Growth and Apoptosis, Studzinski, G. P. (ed.) pp. 32-42, IRL Press, Oxford, UK.
  22. Vadhanavikit, S., Morishita, M., Duff, G. A. and Folkers, K. (1984) Microanalysis for coenzyme Q10 in endomyocardial biopsies of cardiac patients and data on bovine and canine hearts. Biochem. Biophys. Res. Commun. 123, 1165-1169. https://doi.org/10.1016/S0006-291X(84)80255-7
  23. Yan, L. J., Levine, R. L. and Sohal, R. S. (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA 94, 11168-11172. https://doi.org/10.1073/pnas.94.21.11168
  24. Zafarullah, M., Li, W. Q., Sylvester, J., Ahmad, M. (2003) Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60, 6-20. https://doi.org/10.1007/s000180300001
  25. Zhang, L., Yu, L. and Yu, C. (1998) Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273, 33972-33976. https://doi.org/10.1074/jbc.273.51.33972

Cited by

  1. Hyperoxia Synergizes with Mutant Bone Morphogenic Protein Receptor 2 to Cause Metabolic Stress, Oxidant Injury, and Pulmonary Hypertension vol.49, pp.5, 2013, https://doi.org/10.1165/rcmb.2012-0463OC
  2. Early induction of uncoupling protein-2 in pulmonary macrophages in hyperoxia-associated lung injury vol.25, pp.9, 2013, https://doi.org/10.3109/08958378.2013.810679
  3. Cellular metabolism of brevetoxin (PbTx-2) by a monocyte cell line (U-937) vol.53, pp.1, 2009, https://doi.org/10.1016/j.toxicon.2008.10.024
  4. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines vol.262, pp.3, 2009, https://doi.org/10.1016/j.tox.2009.06.006
  5. Both Hypoxemia and Extreme Hyperoxemia May Be Detrimental in Patients with Severe Traumatic Brain Injury vol.26, pp.12, 2009, https://doi.org/10.1089/neu.2009.0940
  6. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds vol.13, pp.1, 2014, https://doi.org/10.1186/s12934-014-0181-5
  7. Reversal of functional loss in the P23H-3 rat retina by management of ambient light vol.83, pp.5, 2006, https://doi.org/10.1016/j.exer.2006.05.012
  8. Mitochondrial DNA Damage Mediates Hyperoxic Dysmorphogenesis in Rat Fetal Lung Explants vol.103, pp.2, 2013, https://doi.org/10.1159/000342632