Analysis of the Anaerobic Bacterial Community in the Earthworm (Eisenia fetida) Intestine

Shin, Kwang-Hee;Yi, H.;Chun, Jong-Sik;Cha, Chang-Jun;Kim, In-Seon;Hur, Hor-Gil

  • Published : 2004.09.30

Abstract

Intestinal microbial community structure of earthworm Eisenia fetida was investigated based on 16S rDNA analysis. One hundred different colonies grown on Brain Heart Infusion medium were randomly isolated. Through partial sequence analysis of PCR-amplified 16S rDNA, earthworm intestinal bacteria (EIB) were divided into eight groups, which were further divided into subgroups. Groups EIB 2, EIB 3, EIB 4, EIB 5, EIB 6, EIB 7-1, and EIB 8 showed over 97% similarities to Clostridium bifermentans, C. butyricum, C. glycolicum, C. celerecrescens, C. lituseburense, Staphylococcus epidermidis, and Propionibacterium acnes, respectively. Group EIB 1 consisting of six subgroups, showed unique pyretic line, found to be most closely related to C. subterminale with 90-95% similarity. Subgroup EIB 7-2 showed 93% similarity to S. epidermidis. Among 100 strains, intestinal microbial community consisted of 49, 13, 13, 5, 4, 2, 11, and 3% EIB 1, EIB 2, EIB 3, EIB 4, EIB 5, EIB 6, EIB 7 and EIB 8, respectively, indications that group EIB 1 was dominant bacterial group in earthworm intestinal bacterial community. Considering earthworm plays key role in improving physical and chemical properties of soil, this study provides valuable information on bacterial community structure of intestine of these ecologically important organisms.

Keywords

References

  1. Edwards, C. A. and Lofty, J. R. (1972) Biology of earthworms. Chapman Hall, London
  2. Furlong, M. A., Sigleton, D. R., Coleman, D. C. and Whitman, W. B. (2002) Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265-1279 https://doi.org/10.1128/AEM.68.3.1265-1279.2002
  3. Piearce, T. G. (1978) Gut contents of some lumbricid earthworms. Pedobiologia 18, 153-157
  4. Madsen, E. L. and Alexander, M. (1982) Transport of Rhizobium and Psedomonas through soil. Soil Sci. Soc. Am. J. 46, 557-560 https://doi.org/10.2136/sssaj1982.03615995004600030023x
  5. Parle, J. N. (1963) Micro-organisms in the intestines of earthworms. J. Gen. Microbiol. 31, 1-11 https://doi.org/10.1099/00221287-31-1-1
  6. Daane, L. L., Molina, J. A. E., Berry, E. C. and Sadowsky, M. J. (1996) Influence of earthworm activity on gene transfer from Psedomonas fluorescens to indigenous soil bacteria. Appl. Environ. Microbiol. 62, 515-521
  7. Daane, L. L., Molina, J. A. E. and Sadowsky, M. J. (1997) Plasmid transfer between spatially separated donor and recipient bacteria in earthworm containning soil microcosms. Appl. Environ. Microbiol. 63, 679-686
  8. Stephens, P. M., Davoren, C. W., Ryder, M. H. and Doube, B. M. (1993) Influence of the lumbricid earthworm Aporrectodea trapezoides on the colonization of wheat roots by Pseudomonas corrugata strain 2140R in soil. Soil Biol. Biochem. 25, 1719-1724 https://doi.org/10.1016/0038-0717(93)90175-B
  9. Fischer, O. A., Matlova, L., Bartl, J., Dvorska, L., Svastova, P., Maine, R. D., Melicharek, I., Bartos, M. and Pavlik, I. (2003) Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet. Microbiol. 91, 325-338 https://doi.org/10.1016/S0378-1135(02)00302-4
  10. Daane, L. L. and Haggblom, M. M. (1999) Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl. Environ. Microbiol. 65, 2376-2381
  11. Flack, F. M. and Hartenstein, R. (1984) Growth of the earthworm Eisenia foetida on microorganisms and cellulose. Soil Biol. Biochem. 16, 491-495 https://doi.org/10.1016/0038-0717(84)90057-9
  12. Hong, Yong, Kim T. H. and Na Y. E. (2001) Identity of two earthworms used in vermiculture and vermicomposting in Korea: Eisenia andrei and Perionyx excavatus. Korean Journal of Soil Zoology. 17, 185-190
  13. Hartenstein, R. (1981) Sludge decomposition and stabilization. Science 212, 743-749 https://doi.org/10.1126/science.212.4496.743
  14. Priya, K. and Garg, V. K. (2003) Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresource Technology 90, 311-316 https://doi.org/10.1016/S0960-8524(03)00146-9
  15. Pitcher, D. G., Saunders, N. A., and Owen, R. J. (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8, 151-156 https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  16. Chun, J. and Goodfellow, M. (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240-245 https://doi.org/10.1099/00207713-45-2-240
  17. Lane, D. J. (1991) 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, Stackebrandt, E. and Goodfellow, M. (ed.) pp. 115-175, Wiley, Chichester
  18. Chun, J. (1995) Computer-assisted classification and identification of actinomycetes. Ph.D. Thesis, University of Newcastle, Newcastle upon Tyne, UK
  19. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  20. Stackebrandt, E. and Goebel, B. M. (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849 https://doi.org/10.1099/00207713-44-4-846
  21. Simon, G. L. and Gorbach, S. L. (1984) Intestinal flora in health and disease. Gastroenterology 86, 174-193
  22. Salminen, S., Bouley, C., Boutron-Ruault, M. C., Cummings, J. H., Franck, A., Gibson, G. R., Isolauri, E., Moreau, M. C., Roberfroid, M. and Rowland, I. (1998) Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 80, S147-171 https://doi.org/10.1079/BJN19980108