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We consider the traffic grooming problem for the design of SONET/WDM(Synchronous Optical NETwork/ 
Wavelength Division Multiplexing) ring networks. Given a physical network with ring topology and a set of 
traffic demands between pairs of nodes, we are to obtain a stack of rings with the objective of minimizing the 
number of ADMs installed at the nodes. This problem arises when a single ring capacity is not large enough to 
accommodate all the demands. As a solution method, an efficient algorithm based on the branch-and-price 
approach has been reported in the literature for the problem in which only unidirecional path switched ring 
(UPSR) was considered. In this study, we suggest integer programming models and the algorithms based on the 
same approach as the above one, considering two-fiber bidirectional line switched ring(BLSR/2), and BLSR/4 
additionally. Using the results, we compare the number of required ADMs for all types of the ring architecture.
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1.  Introduction

Synchronous Optical NETwork (SONET) or Syn- 
chronous Digital Hierarchy (SDH) self-healing rings 
(SHRs) (Wu, 1992) are widely used for today’s 
optical transport system due to their simple 
topology and rapid failure restoration. 

Suppose we have a physical network with ring 
topology and traffic demands between some pairs 
of nodes. In case a single ring is insufficient to 
serve all the demands due to its limited capacity 
(e.g. OC-48 = 2.5Gbps), one common approach is 
to use a stack of rings. A stack of rings is 

composed of overlaid SONET rings with the same 
topology. It can be realized by simple point-to- 
point Wavelength Division Multiplexing (WDM) 
(Ramaswami and Sivarajan, 1998) channels be- 
tween adjacent nodes, which results in a hierar- 
chical SONET / WDM ring network(Ramaswami 
and Sivarajan, 1998; Wan et al., 2000; Zhang and 
Qiao, 2000). It is possible due to WDM technology 
that allows each fiber to support multiple 
wavelengths. In this ring network, each wavelength 
corresponds to a SONET ring. 

<Figure 1> (Ramaswami and Sivarajan, 1998) 
shows a configuration of SONET / WDM ring net- 
work.
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Figure 1. SONET/WDM ring configuration and topology seen by SONET layer.
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Figure 2. Two extreme cases of traffic grooming.
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The key node equipment in the network consists 
of optical add-drop multiplexers (OADMs) and 
SONET ADMs. The OADM installed at each node 
is assumed to be capable of dropping and adding 
any number of wavelengths. If a wavelength does 
not carry traffic terminating at a particular node, 
the OADM may allow the wavelength to optically 
bypass that node rather than being electronically 
terminated. Consequently, the number of ADMs can 
be reduced.

As ADMs are expensive (typically hundreds of 
thousands of dollars), a fundamental bandwidth 
management problem is how to route and groom 

the traffic demands to minimize the total number 
of ADMs. There have been many researches on 
the traffic grooming in SONET / WDM ring 
networks (Arijs and Demeester, 1998; Chiu and 
Modiano, 2000; Ramaswami and Sivarajan, 1998; 
Simmons et al., 1999; Sutter et al., 1998; Wan et 
al., 2000; Zhang and Qiao, 2000). Numerical 
examples in Ramaswami and Sivarajan (1998) and 
Simmons et al. (1999) show that the number of 
ADMs can be reduced by traffic grooming pro- 
cedure. We give a simple example that discrimi- 
nates the worst grooming from the best. In 
<Figure 2>, (a) gives the worst grooming resulting 

Node pair (1,3) (1, 5) (2, 4) (2, 6) (3, 5) (4, 6)

Demand 2 2 2 2 2 2

Ring capacity: 2 (no unit)
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in 12 ADMs, whereas (b) gives the best grooming 
resulting in 6 ADMs, where capacity of each ring 
is two. Please also refer to the numerical example 
in Ramaswami and Sivarajan (1998).

We assume demand of a node pair can be split 
by integers and routed in different rings. However, 
we do not consider the inter-ring traffic. One can 
consider deploying switches at some nodes to 
further groom the traffic. Allowing the inter-ring 
traffic that flows through a switch may result in 
fewer ADMs but increases complexity in network 
management (Simmons et al., 1999). 

We consider every general architecture of SONET 
SHRs: unidirectional path switched ring (UPSR), 
bidirectional line switched ring (BLSR). They both 
can restore 100% of traffic in case that a fiber 
cable is cut by rerouting the effected traffic. In a 
UPSR, working traffic is carried around the ring 
in one direction. In a BLSR, working traffic travels 
in both directions over a single path that uses the 
two parallel communications paths(operating in 
opposite directions) between nodes of the ring. A 
BLSR may use two or four fibers depending on 
the spare capacity arrangement. In a four-fiber 
BLSR (BLSR/4), a second communications ring, 
separate from the first, is provided for protection, 
and working and protection channels use separate 
communications rings. In a two-fiber BLSR 
(BLSR/2), working and protection channels use the 
same fiber with half of the bandwidth reserved 
for protection. See Wu (1992) for details of SHRs. 

In the literature, most previous studies have 
focused on analysis considering special traffic 
pattern (such as uniform all-to-all traffic or distance- 
dependent traffic) or developing heuristic algo- 
rithms (Chiu and Modiano, 2000; Ramaswami and 
Sivarajan, 1998; Simmons et al., 1999; Wan et 
al., 2000; Zhang and Qiao, 2000). Arijs and 
Demeester (1998) presented a mathematical formu- 
lation of the problem in which BLSR/2s are 
considered under the condition that routing path of 
each demand is given in advance. However, 
simple branch-and-bound gave optimal solutions 
for only small networks.

Sutter et al. (1998) applied the branch-and-price 
approach to solving the problem in which only 
UPSR was considered. The algorithm yielded 
optimal solutions for problem instances of practical 
size in a short time. However, despite the great 
concern about the traffic grooming in SONET/ 
WDM ring networks (Arijs and Demeester, 1998; 
Simmons et al., 1999; Wan et al., 2000; Zhang 
and Qiao, 2000), to our knowledge, optimization 
algorithms for the problem considering BLSRs 
have not been developed yet except just applying 

the branch-and-bound procedure. In other words, 
there has been no research doing the exact 
economic comparative test between the ring types. 
Economic comparison is one of the main concern 
in selecting the proper ring type though they may 
select it based on another strategy. In this study, 
we do the exact comparative test by applying the 
branch and price algorithm (Sutter et al., 1998) for 
all three ring types and report the number of 
ADMs needed to route the demand. 

UPSR and BLSR/4 use ADMs with TSA (time 
slot assignment) function, while BLSR/2 uses 
ADMs with TSI (time slot interchange) function. A 
node in BLSR/4 is composed of two ADMs or 
one 1+1 ADM (Wu, 1992). ADMs may cost 
differently according to their types and vendors. 
For ease of exposition, we will assume that each 
node of BLSR/4 in this study is equipped with an 
1+1 ADM. 

BLSR is an attractive architecture in the sense 
that it can carry much more traffic than UPSRs of 
the same capacity though it may result in rather 
increased system complexity, slower restoration 
speed, and higher cost of node components for a 
capacity (Wu, 1992). The capacity requirement is 
determined by a maximum traffic load over the 
links of the ring. We assume that integer demand 
splitting (into two directions along the cycle) is 
allowed in BLSRs. Note that most previous 
researches assume that the routing paths are 
determined in advance(for example, by shortest 
path routing). We assume the ring capacity is 
OC-48 and demands are given in STS-1 
(51.84Mbps). Thus, in BLSR/2, only 24 STS-1 
channels are used as working channel and the 
other ones are reserved for restoration.

In the next section, we present mathematical 
formulations of the problem. In section 4, we give 
a branch-and-price algorithm. We report the com- 
putational results in section 5. Section 6 includes 
the concluding remarks.

2.  Formulations

Since a direct formulation (Sutter et al., 1998) of 
the problem has typically a symmetric structure 
resulting from the indexing of rings and it leads 
to well-known difficulties in branch-and-bound, 
mathematical formulations based on decomposition 
and column generation are considered in this 
research; for details of the drawbacks of the direct 
formulation, refer to Sutter et al. (1998). The 



216 Donghan Kang․Sungsoo Park

formulation of the master problem has an expo- 
nential number of columns, but linear 
programming (LP) relaxation of it can be solved 
efficiently using column generation technique. 
Each column corresponds to a feasible ring 
configuration composed of the ADM nodes and 
the assigned demands; the objective coefficient is 
the number of ADMs in it.

Let      be a given physical ring net- 
work, where  is the set of nodes and   is the 
set of links. We assume that the nodes are 
numbered from 1 to    in clockwise direction. 
Let   be the set of node pairs each of which 
has a traffic demand between the two nodes. Let 
  be the set of all feasible ring configurations. 
The following is the notation used in the 
formulation of the master problem.

    
 : the number of ADMs installed in ring con- 

figuration  ∊  . 
 : demand of node pair ∊ . 
 : the amount of demand for node pair ∊  

assigned to the ring configuration  . 
 : the general integer variable indicating the 

number of SONET rings (wavelengths) of 
configuration  .

  : the lower and upper bounds on the number of 
rings, respectively.

Then the master problem can be formulated as 
follows.

   Min            ∑ ∊  (1)
s.t. ∑ ∊ ≥  ∊    (2)

≤∑ ∊ ≤  (3)
 , nonnegative integer,  ∊   

The objective (1) is to minimize the number of 
ADMs installed at the nodes. Constraints (2) state 
that all demands should be satisfied. Constraint (3) 
specifies the bounds on the number of SONET 
rings (wavelengths). Typically,    since it will 
lead to little difficulties in real operation of the 
network unless other constraints such as the limit 
on the number of ADM nodes in a ring are 
imposed.

 Column generation procedure is described as 
follows. Given a restricted formulation of LP 
relaxation of the master problem with the column 
set  ⊂  , the current optimal solution is also 
optimal for the LP relaxation of the master 
problem if all reduced costs for columns 

 ∊ ╲ are at least zero. The reduced cost for 
a column   is  ∑ ∊     . Here, 
 ≥  ,  ≥ , and  ≤  are optimal values 
of the dual variables associated with the k-th 
constraint in (2), and the two cardinality con- 
straints (3), respectively. Therefore, if any columns 
with negative reduced costs are found, they are 
added to the restricted formulation and it is 
re-optimized. Otherwise, we have solved the LP 
relaxation of the master problem.

The subproblem is to generate a favorable ring 
configuration to be added to the formulation as an 
entering column. The notation used in the 
formulation of the subproblem for generating an 
UPSR (SPU) is as follows.

 : the general integer variable indicating the amount 
of demand of node pair  routed in this ring 
configuration.

 : the binary variable that is 1 if an ADM is 
installed at node  ∊   and 0 otherwise.

 : the capacity of SONET rings;    in this 
research.

Then the SPU can be formulated as follows 
(Sutter et al., 1998).

(SPU)  Min 
∑ ∊   ∑ ∊                  (4) 

s.t. 
≤  ≤      ∊    (5)
∑ ∊ ≤  (6)
 ∊      ∊ 

, nonnegative integer,  ∊   

 
The objective function (4) represents the reduced 

cost of the generated column. Constraints (5) state 
that up to  units of demand can be routed only 
if ADMs are installed at nodes   and , where 
    . Constraint (6) represents that the ca- 
pacity of the UPSR is .

We use the following notation to formulate sub- 
problem for generating a BLSR / 4 (SPB4). Unlike 
SPU, we should introduce two variables indicating 
traffic flows into two different directions for each 
node pair for demand: clockwise and counter- 
clockwise.

  : the set of node pairs for which clockwise paths 
pass link .
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  : the set of node pairs for which counterclockwise 
paths pass link .

 : the general integer variable indicating the amount 
of demand for node pair  routed in clockwise 
direction.

 : the general integer variable indicating the amount 
of demand for node pair  routed in counter- 
clockwise direction.

Then the subproblem can be formulated as 
follows.

(SPB4) Min 

∑ ∊    ∑ ∊          
s.t.
  


≤    ≤   (7) 

            ∊ 

∑  ∊  
  ∑  ∊  

≤   ∊   (8) 
        ∊      ∊   

 and , nonnegative integers,  ∊          (9)

Constraints (7) state that the demand for node 
pair k  can be split by integers and routed in 
both directions along the cycle if both nodes have 
ADMs. Constraints (8) state that traffic load at 
each link should be within working capacity of 
BLSR / 4 (Wu, 1992). If BLSR / 2 is used instead 
of BLSR /4, the righthand side becomes  . The 
corresponding problem is denoted as SPB2.

3.  Computational Complexity

The traffic grooming problem for UPSRs is NP- 
hard (Chiu and Modiano, 2000). NP-hardness for 
BLSRs can be found in Wan et al. (2000). SPU 
has been proved to be NP-hard (Sutter et al., 1998). 
We can similarly show that SPB4 is NP-hard by 
performing pseudo-polynomial transformation from 
clique problem (Garey and Johnson, 1979).

Clique problem
INSTANCE: A graph      and a positive 

integer  ≤ .
QUESTION: Does   contain a clique of size   or 

more, that is a subset   ⊆   such that   ≥   
and every two nodes in   are joined by an edge in 
 ?

On the other hand, the decision problem version of 
SPB4 is defined as follows.

SPB4 upper-bound feasibility problem
INSTANCE: A ring network     , a set of 

pairs of nodes  , integer demand  for each  ∊  , 
a real value  ≥   for each  ∊  , ring capacity , 
and real values  ≥   ≤ , .

QUESTION: Is there a subset   ⊆   and the 
allocation of the demand in the two directions   
for each  ∊   such that 

  

≤


    ∊        
 

∑  ∊  
  ∑  ∊  

≤   ∊     
  ∑ ∊          ≤    

Proposition 1. The SPB4 upper-bound feasibility 
problem is strongly NP-complete.

Proof. The problem is clearly in NP. Let an arbitrary 
instance of Clique problem be given by the graph 
   and the positive integer ≤ . 
Consider a physical network with ring topology, 
     such that    and   is defined as 
the set of edges            , 
where nodes in  are numbered arbitrarily. Set 
  ,       ,   ,     for 
 ∊  , and     ,         . 
Then there is a clique of size   or more for  if and 
only if there is a feasible solution of value no more 
than  . Note that since  is large 
enough and all demands are 1, any routing of demands 
does not result in an infeasible solution to the 
subproblem. Since all numbers in the constructed 
instance are   , we have given a pseudo- 
polynomial transformation from Click problem to 
SPB4 upper-bound feasibility problem.

We can show the NP-hardness of SPB2 by setting 
      .

4.  Branch-and-Price Algorithm

Branch and price, a generalization of branch and 
bound with LP relaxation, allows column genera- 
tion to be applied throughout the branch-and-bound 
tree. This approach has been shown to be very 
effective to solve huge integer programming prob- 
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Figure 3. Branch-and-price algorithm.
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lems that are difficult to solve using other 
methods. Please refer to Barnhart et al. (1998), 
Vanderbeck (2000) and Vanderbeck and Wolsey  
(1996) for details of the algorithmic issues and 
applications. <Figure 3> shows the flow chart of 
the general branch-and-price algorithm.

4.1  Initial Columns
Initial columns are necessary to start the column 

generation. First, we set them as a trivial diagonal 
matrix such that -th diagonal element is 
    and other components are all zero, 
where  is  if the ring architecture is UPSR or 
BLSR/4 and , otherwise. Objective coefficient 
of each column is 2. Second, we generate other 
columns through a greedy-style heuristic, which is 
described next for the case of BLSRs. 

We consider an optimization problem to 
maximize the sum of demands that can be routed 
in a BLSR/4 of capacity  ( in case of 
BLSR/2). The problem can be formulated as 
follows. Description of the notation is omitted, 
since it can easily be inferred from the former 
one for SBP4.

Max ∑ ∊       
s.t.   


≤  ∊    (10) 

(8), (9)  

Constraints (10) say that up to  units of 
demand  can be routed. To our knowledge, the 
complexity of this problem has not been reported, 
but we found after some preliminary tests that it 
could be solved efficiently by applying a standard 
branch-and-bound procedure. After we solve the 
problem to optimality, we may have some of the 
demands   ∊   still unsatisfied. We then 
solve the problem again for the unsatisfied 
demands. We repeat the procedure until all 
demands are covered. A new column is obtained 
when we solve the problem once.

4.2  Branching
When LP relaxation of the master problem has 

been solved to optimality and the solution is not 
integral, a branching procedure follows. As known 
well in the literature (Barnhart et al., 1998; Van- 
derbeck, 2000; Vanderbeck and Wolsey, 1996), the 
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conventional branching rule based on variable 
dichotomy may require finding a column of up to 
-th lowest reduced cost at depth  in the branch- 
and-bound tree, which is generally intractable if 
the subproblem is NP-hard. Instead, we use the 
branching rule due to Sutter et al. (1998) and 
Vanderbeck(2000). The branching rule is com- 
posed of two phases. The first phase determines 
the assignment of ADM nodes to the stack of 
rings. In the second phase, we determine the 
assignment of demands to the stack of rings, 
which is theoretically indispensable for 
guaranteeing an optimal solution. Actually, 
however, the second phase is not necessary, and 
the first one is sufficient for the purpose.

Phase 1
The first phase is the specific case of the 

general branching framework in Vanderbeck and 
Wolsey (1996) or Vanderbeck (2000). We branch 
on the artificial variables  indicating the num- 
ber of rings each in which ADMs are installed at 
all nodes in  ⊆  . Variables are searched in 
non-decreasing order of .

Let   be an optimal solution to the LP 
relaxation of the master problem at a node of the 
branch-and-bound tree. If a value   is not 
integer, two nodes are generated by adding the 
next inequalities: ≥     and  ≤   , 
respectively, to the master problem formulation. 
Note that, actually,  is expressed as the sum 
of  's such that ADMs are installed at all nodes 
in  in configuration  ∊  .  For example, let 
      and suppose that node 1 and node 2 
are currently equipped with ADMs in 
configurations 1, 3, 5 and 8. Suppose also that 
we have            , then we 
generate two child nodes with additional 
inequalities (constraints)

       ≥   and 
       ≤ 

respectively.
Suppose we have selected a node of the 

branch-and-bound tree and solved the LP with the 
constraint, ≥    . We assume that no more 
constraints have been added for simplicity. Let 
≥  be an optimal dual value associated with 
the additional constraint. Because of the constraint, 
the reduced cost for a column index   becomes 

 ∑ ∊         , where      if 
all nodes in  are equipped with ADMs in ring 
configuration  , and 0 otherwise. Let  be a 0-1 
variable such that    if and only if    for 
all  ∊  and 0 otherwise; that is,   ∏ ∊  . 
Then the formulation of the subproblem is 
modified as follows.

Modification of the subproblem formulation
∙The term '  ' is added to the current objective 

function. For example, the objective function of SPB4 
becomes ∑ ∊  ∑ ∊           .

∙The next inequalities are added to the current 
formulation of the subproblem.

≤    ∊  (11)

≥ ∑ ∊      (12)

    Note that these inequalities are adopted to linearize 
the equation   ∏∊  . 

We can modify the subproblem similarly in case 
that we solve LP with the constraint,  ≤   , 
and ≤ , an optimal dual value associated with 
the inequality, is obtained. It is noticeable that, 
since we aim at minimizing the objective function, 
not all inequalities in (11) and (12) are necessary 
to solve the modified subproblem. In case 
    is used, the inequality (12) is not 
necessary. On the other hand, when     is 
used, the inequalities (11) are not necessary. 
However, if  or  is zero, all of the 
inequalities are necessary.

The drawback of the above branching rule is 
that more additional constraints are added to the 
formulations of the master problem and subprob- 
lem as the depth of the branch-and-bound tree 
increases. In real implementation, however, no 
branching had occurred such that   ≧  .

If all the artificial variables are integral, we are 
given a node-ring assignment (hereafter, node 
assignment) denoting an assignment of ADMs to 
several rings of a stack. The node assignment is 
said to be feasible if it can route all the given 
demands. If it is feasible, we have a feasible 
solution to the traffic grooming problem, and the 
incumbent solution (the best solution found so far) 
may be updated. We can check the feasibility of 
a node assignment by solving a maximum flow 
problem for the case of UPSRs (Sutter et al., 
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1998). For the case of BLSRs, we consider an 
optimization problem for checking the feasibility. 
Let  be the set of rings of the stack. To 
formulate the problem, we introduce decision 
variables   and  . The variable   (or ), 
 ∊   ∊  represents the amount of demand 
 routed clockwise (or counterclockwise) in ring 
. Then the problem can be formulated as follows.

Max ∑ ∊ ∑ ∊       
s.t.   


≤     ∊   (13) 

∑  ∊  
  ∑  ∊  

≤   
 ∊   ∊    
 , 


, nonnegative integers, 

 ∊   ∊  

In constraints (13),       if nodes   and 
 are equipped with ADMs in ring  and 0 
otherwise, where     . The problem can be 
solved in a short time empirically by applying the 
branch-and-bound procedure. 

If the optimal value is ∑∊ , we are given a 
new feasible solution to the traffic grooming 
problem as described earlier. On the other hand, 
if the node assignment is infeasible, we enter into 
phase 2.

Phase 2
When an infeasible node assignment is obtained 

at a branch-and-bound node, we need additional 
branching based on a set of bounds on the 
components ( 's) of  ∊   in order to get an 
optimal solution; for details of the branching 
procedure, refer to Vanderbeck (2000). However, 
it is our experience that such branching rarely 
(actually never) happens.

4.3  Primal Heuristic
At every tenth node of the tree, we try to get a 

feasible solution using a variable-fixing heuristic. 
The variable of the highest value is fixed to the 
least integer greater than or equal to the value, 
and the linear program is re-optimized. The 
process is repeated until an integer solution is 
obtained or it is identified that a feasible solution 
cannot be obtained. When a feasible solution has 
been obtained, the incumbent solution may be 
updated. We did not generate any more columns 
after fixing some variables because it increased 
running time much.

5.  Computational Results

We generated random data and coded a computer 
program in C to test the branch-and-price 
algorithm. The generated data can be classified 
into four groups according to node-'node pair' 
sizes, namely, (7, 12), (10, 18), (13, 31), and (15, 
31), where node pair size refers to the number of 
pairs of nodes between which demand is defined. 
The sizes were adopted considering practical 
planning scenarios in Korea and they are not less 
than those shown in the literature(Sherali et al., 
2000; Sutter et al., 1998). Demand values were 
generated as follows: 90% of demands were 
generated uniformly between 1 and 10, while the 
other 10% of them were generated uniformly 
between 11 and 25. We generated three test 
problems for each node-‘node pair’ size.

<Table 1> summarizes the results of the tests on 
Intel Pentium III PC with CPU of 866MHz. 
Heading ‘Opt’ refers to the optimal objective value 
of the problem. Gap represents relative ratio between 
  and  , and defined as      
×   , where   and   are the optimal 
objective values of the problem and LP relaxation 
of it, respectively. ‘#Rings’ refers to the number 
of SONET rings (wavelengths used). ‘#B&B nodes’ 
refers to the number of nodes generated in the 
branch-and-price algorithm. ‘#Columns’ refers to 
the number of generated columns (including initial 
columns). Finally, ‘Time(s)’ refers to running time 
in seconds. We used callable library of ILOG 
CPLEX 7.0 as LP and MIP solvers. 

We could obtain optimal solutions for all test 
problems in a reasonable time. Percentage gaps 
range from 0% to 17%. For all test problems, we 
set the bounds on the number of wavelengths as 
   and   . One can set them to any 
values such that  ≤  , but careless setting may 
make the problem infeasible. Some test problems 
such as the second one with size (7, 12) result in 
a stack of one ring when the ring architecture is 
BLSR/4, which means a ring is sufficient to route 
all demands.

We also consider data of another special demand 
types. Problem size    means that pairs of 
a d j a c e n t  n o d e s  h a v e  d e ma n d s ,  t h a t  i s ,  
               ,  and   , 
 ∊  ,  where        .  Also,  s ize 
      means  that  demands are  given 
between one hub and the remaining nodes, that is, 
             ,  a n d     ,
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Table 1.  Computational results

   a) UPSR

Problems Opt. Gap (%) #Rings #B&B nodes #Columns Time (s)   
(7, 12) 1 12 11 3 14 77 1.1
        2 11 5 3 0 48 0.4
        3 11 9 3 6 66 0.8

(10, 18) 1 16 12 3 17 193 4.9
        2 16 7 3 9 115 2.3
        3 16 5 3 14 139 3.4

(13, 31) 1 25 8 5 35 466 31.6
        2 27 4 6 29 318 24
        3 22 4 4 20 413 25.4

(15, 31) 1 27 4 6 14 215 11.9
        2 26 7 5 140 981 87.1
        3 25 5 5 84 749 68.8

   b) BLSR/2

Problems Opt. Gap (%) #Rings #B&B nodes #Columns Time (s)   
(7, 12) 1 12 17 3 9 88 1.7
        2 11 17 3 5 88 1.6
        3 10 5 2 0 52 0.9

(10, 18) 1 14 5 2 6 174 7.7
        2 16 12 4 34 203 10.1
        3 16 9 3 9 117 5.8

(13, 31) 1 22 7 4 75 1258 219.7
        2 24 6 5 93 1146 222.2
        3 21 8 4 34 461 55.6

(15, 31) 1 26 5 6 24 314 54
        2 24 7 4 133 1541 318.2
        3 24 8 4 65 645 113.9

   c) BLSR/4

Problems Opt. Gap (%) #Rings #B&B nodes #Columns Time (s)   
(7, 12) 1 9 15 2 2 65 0.5
        2 7 0 1 0 45 0.1
        3 7 0 1 0 57 0.1

(10, 18) 1 10 0 1 0 123 0.4
        2 12 8 2 4 131 3.3
        3 12 9 2 6 157 4.3

(13, 31) 1 17 6 2 14 732 171.9
        2 18 5 2 12 433 59.3
        3 17 10 2 5 337 30.5

(15, 31) 1 21 7 3 8 409 52.8
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Table 2.  Computational results: demands of special type
a) demands between adjacent nodes

Problems  Ring type Opt. Gap (%) #Rings #B&B nodes #Columns Time (s) 
(7, 7)   U 14 6 5 16 28 0.5

(10, 10)  U 20 6 7 27 51 1
(13, 13)  U Inf. - - -  -   -     
(15, 15)  U Inf. - - -  -   -     
(7, 7)   B2 13 33 2 33 68 1

(10, 10)  B2 19 34 6 68 114 3.4
(13, 13)  B2 25 35 7 83 166 7.6
(15, 15)  B2 29 35 7 670 1032 79.8
(7, 7)   B4 7 0 1 0 15 0

(10, 10)  B4 10 0 1 0 31 0.1
(13, 13)  B4 13 0 1 0 30 0.1
(15, 15)  B4 15 0 1 0 56 0.1

    b) demands between one hub and the remaining nodes

Problems  Ring type Opt. Gap (%) #Rings #B&B nodes #Columns Time (s) 
(7, 6)  U 12 6 5 10 32 0.4
(10, 9) U 18 6 7 14 54 1.1
(13, 12) U Inf. - - -  -  -    
(15, 14) U Inf. - - -  -  -    
(7, 6)  B2 12 6 5 10 41 1
(10, 9) B2 18 6 6 30 78 0.5
(13, 12) B2 Inf. - - -  -  -    
(15, 14) B2 Inf. - - -  -  -    
(7, 6)  B4 8 0 2 0 16 0.1
(10, 9) B4 12 0 3 5 37 1
(13, 12) B4 16 0 4 6 52 2.9
(15, 14) B4 19 2 5 149 217 8.6

Inf : Infeasible, U : UPSR, B2 : BLSR/2, B4 : BLSR/4

 ∊  , where node 1 is the hub. Computational 
results on the data are reported in <Table 2>. We 
can see that all problems can be solvable in a 
short time, but the limited number of wavelengths 
( ) causes some test problems like    
with UPSR to be infeasible. The limit is more 
restrictive with the architecture UPSR than with 
BLSR/2 or BLSR/4; it is most unrestrictive with 
BLSR/4, which can be easily inferred from the 
observation that it can hold the largest amount of 
demands given a capacity. All problems of size 
   result in one ring for BLSR/4 and the 

optimal values are   since    . Clearly, we 
have the same result for BLSR/2 if  ≤ .

<Table 3> shows the (average) ratio of the 
number of ADMs for BLSRs to the number for 
UPSR. We can see that the number of required 
ADMs for BLSR/2 is equal to or slightly less 
than that for UPSR(on average). The relative 
number of ADMs for UPSR : BLSR/2 : BLSR/4 
is 1 : 0.9-1 : 0.5-0.8, where the relative number 
for UPSR is 1. Note, however, that the ratios 
may be changed depending on the problem 
instances－ please recall that both BLSR/2 and 
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BLSR/4 can route all demands with  ADMs for 
the instances    with  ≤ . The table also 
helps us make a decision on the selection of the 
appropriate ring architecture in terms of total node 
(ADM) cost. For example, if the node cost of 
BLSR/4 is 1.3 times higher than that of UPSR 
for the problems of size (7, 12), we can conclude 
that using BLSR/4 is more economical than using 
UPSR.  

Table 3.  (Average) Ratio of the number of ADMs 
                for BLSR to the number for UPSR

Problem size B2 / U B4 / U   
(7, 12)     0.97 0.67
(10, 18)    0.96 0.71
(13, 31)    0.91 0.71
(15, 31)    0.95 0.76
(7, 7)      0.93 0.5

(10, 10)    0.95 0.5
(13, 13)    -   -      
(15, 15)    -   -      
(7, 6)      1 0.67
(10, 9)     1 0.67
(13, 12)    -   -
(15, 14)    -   -

U : UPSR, B2 : BLSR/2, B4 : BLSR/4

6.  Concluding Remarks

In this paper, we developed an efficient traffic 
grooming algorithm for the design of SONET/ 
WDM ring networks. For each type of the BLSR, 
we presented integer programming models of the 
problem and developed an efficient algorithm based 
on the branch-and-price approach. We showed that 
our algorithms could solve the problem instances 
of practical size to optimality within a reasonable 
time. Using the result, we compared the number 
of required ADMs for all types of the ring 
architectures.

In this study, we set the bounds on the number 
of SONET rings in the master formulation. 
However, there is another way of controlling the 
number of SONET rings: introducing a fixed cost 
of a ring. The value can be set by a planner. As 
the cost of a ring becomes higher, smaller number 

of rings will be generated. No changes are made 
in the branch-and-price algorithm except in the 
objective functions of the formulations of the 
master problem and subproblem, respectively.

As described in section 1, if some nodes are 
equipped with switches for the inter-ring transmis- 
sion, the number of ADM nodes may be reduced 
further. However, the decomposition-based model 
in this study cannot be applied in that case. Some 
other problem-specific methods would be needed 
to solve the problem.
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