DOI QR코드

DOI QR Code

Modification of Substrate Inhibition of Synaptosomal Acetylcholinesterase by Cardiotoxins

  • Published : 2004.05.31

Abstract

Different types of cardiotoxin (I-V and n) were isolated and purified from the venom of the Taiwan cobra (Naja naja atra). The effects of these cardiotoxins were studied on membrane-bound acetylcholinesterase, which was isolated from a sheep's brain cortex. The results showed that cardiotoxins I-III, V, and n activated the enzyme by modification of substrate inhibition, but cardiotoxin IV's reaction was different. The inhibition and activation of acetylcholinesterase were linked to the functions of the hydrophobicity index, presence of a cationic cluster, and the accessible arginine residue. Our results indicate that Cardiotoxins have neither a cationic cluster nor an arginine residue in their surface area of loop I; therefore, in contrast to fasciculin, cardiotoxins are attached by loop II to the peripheral site of the enzyme. As a result, fasciculin seems to stabilize nonfunctional conformation, but cardiotoxins seem to stabilize the functional conformation of the enzyme. Based on our experimental and theoretical findings, similar secondary and tertiary structures of cardiotoxins and fasciculin seem to have an opposite function once they interact with acetylcholinesterase.

Keywords

References

  1. Augustinsson, K. B. (1963) Cholinesterase and anticholinesterase agents; in Classification and Comparative Enzymology of the Cholinesterases and Methods for Their Determination. Eichler, O. and Farah, A. (eds.), pp. 89-128, Springer-Verlag, Berlin, Germany.
  2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
  3. Bhaskaran, R., Huang, C. C., Tsai, Y. C., Jayaraman, G., Chang, D. K. and Yu, C. (1994a) Cardiotoxin II from Taiwan cobra venom, Naja naja atra. Structure in solution and comparison among homologous cardiotoxins. J. Biol. Chem. 269, 23500-23508.
  4. Bhaskaran, R., Huang, C. C., Chang, K. D. and Yu, C. (1994b) Cardiotoxin III from Taiwan Cobra (Naja naja atra) Determination of Structure in Solution and Comparison with Short Neurotoxins. J. Mol. Biol. 235, 1291-1301. https://doi.org/10.1006/jmbi.1994.1082
  5. Bourne, Y., Taylor, P. and Marchot, P. (1995) Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83, 503-512. https://doi.org/10.1016/0092-8674(95)90128-0
  6. Cervenansky, C., Engstrom, A. and Karlsson, E. (1995) Role of arginine residues for the activity of fasciculin. Eur. J. Biochem. 229, 270-275. https://doi.org/10.1111/j.1432-1033.1995.0270l.x
  7. Chang, L. S., Chou, Y. C., Lin, S. R., Wu, B. N., Lin, J., Hong, E., Sun, Y. J. and Hsiao, C. D. (1997) A novel neurotoxin, cobrotoxin b, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. J. Biochem. (Tokyo). 122, 1252-1259. https://doi.org/10.1093/oxfordjournals.jbchem.a021889
  8. Chang, L. S., Huang, H. B. and Lin, S. R. (2002) The multiplicity of cardiotoxins from Naja naja atra (Taiwan cobra) venom. Toxicon. 38, 1065-1076.
  9. Chiou, S. H., Hung, C. C., Huang, H. C., Chen, S. T., Wang, K. T. and Yang, C. C. (1995a) Sequence comparison and computer modeling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem. Biophys. Res. Commun. 206, 22-32. https://doi.org/10.1006/bbrc.1995.1004
  10. Chiou, S. H., Chuang, M. H., Hung, C. C., Huang, H. C., Chen, S. T., Wang, K. T. and Ho, C. L. (1995b) Inhibition of protein kinase C by snake venom toxins: comparison of enzyme inhibition, lethality and hemolysis among different cardiotoxin isoforms. Biochem. Mol. Biol. Int. 35, 1103-1112.
  11. De Ferrari, G. V., Mallender, W. D., Inestrosa, N. C. and Rosenberry, T. L. (2001) Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J. Biol. Chem. 276, 23282-23287. https://doi.org/10.1074/jbc.M009596200
  12. Dodd, P. R., Hardy, J. A., Oakley, A. E., Edwardson, J. A., Perry, E. K. and Delaunoy, J. P. (1981) A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res. 226, 107-118. https://doi.org/10.1016/0006-8993(81)91086-6
  13. Ellman, G. L., Courtney, K. D., Andres, V. Jr and Featherstone, R. M. (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 788-795.
  14. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I. and Sussman, J. L. (1993) Quaternary ligand binding to aromatic residues in the activesite gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA. 90, 9031-9035. https://doi.org/10.1073/pnas.90.19.9031
  15. Jahnke, W., Mierke, D. F., Beress, L. and Kessler, H. (1994) Structure of cobra cardiotoxin CTX I as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. J. Mol. Biol. 240, 445-458. https://doi.org/10.1006/jmbi.1994.1460
  16. Jang, J. Y., Krishnaswamy, T., Kumar, S., Jayaraman, G., Yang, P. W. and Yu, C. (1997) Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 36, 14635-14641. https://doi.org/10.1021/bi971107a
  17. Jayaraman, G., Kumar, T. K. S., Tsai, C. C., Chou, S. H., Ho, C. L. and Yu, C. (2000) Elucidation of the Solution Structure of Cardiotoxin Analogue V from the Taiwan Cobra (Naja naja atra) Venom. Protein Sci. 9, 637-646.
  18. Johnson, J. L., Cusack, B., Davies, M. P., Fauq, A. and Rosenberry, T. L. (2003) Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Biochemistry 42, 5438-5452. https://doi.org/10.1021/bi027065u
  19. Kumar, T. K., Jayaraman, G., Lee, C. S., Arunkumar, A. I., Sivaraman, T., Samuel, D. and Yu, C. (1997) Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol. Struct. Dyn. 15, 431-463. https://doi.org/10.1080/07391102.1997.10508957
  20. Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132. https://doi.org/10.1016/0022-2836(82)90515-0
  21. LeDu, M. H., Housset, D., Marchot, P., Bougis, P. E., Navaza, J. and FontecillaCamps, C. (1996) Structure of fasciculin 2 from green mamba snake venom: Evidence for unusual loop flexibility. Acta. Crystallogr. D. Biol. Crystallogr. 52, 87. https://doi.org/10.1107/S0907444995007517
  22. Lin, S. Y., Liao, C. and Lee, C. Y. (1977) Mechanism of anticholinesterase activities of cardiotoxin, protamine and polylysine. Biochem. J. 161, 229-232.
  23. Mallender, W. D., Szegletes, T. and Rosenberry, T. L. (1999) Organophosphorylation of acetylcholinesterase in the Presence of Peripheral Site Ligands: distinct effects of propodium and fasciculin. J. Biol. Chem. 274, 8491-8499. https://doi.org/10.1074/jbc.274.13.8491
  24. Naderi-Manesh, H., Sadeghi, M., Arab, S. and Moosavi Movahedi, A. A. (2001) Prediction of protein surface accessibility with information theory. Proteins 42, 452-459. https://doi.org/10.1002/1097-0134(20010301)42:4<452::AID-PROT40>3.0.CO;2-Q
  25. Ordentlich, A., Barak, D., Kronman, C., Ariel, N., Segall, Y., Velan, B. and Shafferman, A. (1995) Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J. Biol. Chem. 270, 2080-2091.
  26. Radic, Z., Reiner, E. and Taylor, P. (1991) Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol. Pharmacol. 39, 98-104.
  27. Radic, Z., Quinn, D. M., Vellom, D. C., Camp, S. and Taylor, P. (1995) Allosteric control of acetylcholinesterase catalysis by fasciculin. J. Biol. Chem. 270, 20391-20399. https://doi.org/10.1074/jbc.270.35.20391
  28. Radic, Z. and Taylor, P. (2001) Interaction kinetics of reversible inhibitors and substrates with acetylcholinesterase and its fasciculin 2 complex. J. Biol. Chem. 276, 4622-4633. https://doi.org/10.1074/jbc.M006855200
  29. Rosenberry, T. L., Rabl, C. R. and Neumann, E. (1996) Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site. Biochemistry 35, 685-690. https://doi.org/10.1021/bi952431d
  30. Rosenberry, T. L., Mallender, W. D., Thomas, P. J. and Szegletes, T. (1999) A steric blockade model for inhibition of acetylcholinesterase by peripheral site ligands and substrate. Chem. Biol. Interact. 119, 85-89. https://doi.org/10.1016/S0009-2797(99)00017-4
  31. Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M. and Hirth, C. (1994) Trp279 is involved in the binding of quaternary ammonium at the peripheral site of Torpedo marmorata acetylcholinesterase. Eur. J. Biochem. 219, 155-159. https://doi.org/10.1111/j.1432-1033.1994.tb19925.x
  32. Sentjurc, M., Pecar, S., Stojan, J., Marchot, P., Radic, Z. and Grubic, Z. (1999) Electron paramagnetic resonance reveals altered topography of the active center gorge of acetylcholinesterase after binding of fasciculin to the peripheral site. Biochim. Biophys. Acta 1430, 349-358. https://doi.org/10.1016/S0167-4838(99)00018-7
  33. Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D. and Ariel, N. (1992) Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 11, 3561-3568.
  34. Shi, J., Tai, K., McCammon, A. J., Taylor, P. and Johnson, D.A. (2003) Nanosecond dynamics of the mouse acetylcholinesterase Cys69-Cys96 Omega loop. J. Biol. Chem. 278, 30905-30911. https://doi.org/10.1074/jbc.M303730200
  35. Szegletes, T., Mallender, W. D. and Rosenberry, T. L. (1998) Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Biochemistry 37, 4206-4216. https://doi.org/10.1021/bi972158a
  36. Szegletes, T., Mallender, W. D., Thomas, P. J. and Rosenberry, T. L. (1999) Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect. Biochemistry 38, 122-133. https://doi.org/10.1021/bi9813577
  37. Tai, K., Shen, T., Henchman, R. H., Bourne, Y., Marchot, P. and McCammon, J. A. (2002) Mechanism of acetylcholinesterase inhibition by fasciculin: a 5-ns molecular dynamics simulation. J. Am. Chem. Soc. 29, 6153-6161.

Cited by

  1. Analysis of the activation of acetylcholinesterase by carbon nanoparticles using a monolithic immobilized enzyme microreactor: role of the water molecules in the active site gorge vol.28, pp.5, 2013, https://doi.org/10.3109/14756366.2012.705835
  2. MECHANISMS OF CARDIOTOXIN III-INDUCED APOPTOSIS IN HUMAN COLORECTAL CANCER COLO205 CELLS vol.33, pp.3, 2006, https://doi.org/10.1111/j.1440-1681.2006.04334.x