DOI QR코드

DOI QR Code

Nutritional Value of a Heterotrichous Ciliate, Fabrea salina with Emphasis on Its Fatty Acid Profile

  • Pandey, B.D. (Central Institute of Fisheries Education) ;
  • Yeragi, S.G. (Department of Biology, K. J. Somaiya College) ;
  • Pal, A.K. (Central Institute of Fisheries Education)
  • Received : 2003.06.11
  • Accepted : 2003.12.01
  • Published : 2004.07.01

Abstract

Fabrea salina is a hypersaline ciliate having importance as a live food source for juvenile stages of aquatic animals including smaller invertebrates. The analysis of this ciliate for proximate and biochemical composition was carried out. The moisture, protein, fat, carbohydrate and ash content of F. salina from natural sources were 86.66$\pm$0.380, 56.66$\pm$0.494%, 36.66$\pm$0.614%, 1$\pm$0.073% and 4$\pm$0.182%, respectively. Gas chromatographic analysis (percent area below the curve) revealed that the presence of oleic acid was higher over other fatty acids in both natural and cultured F. salina. The absolute content of oleic acid was higher in natural (18.91% area) than in the cultured (10.74% area) F. salina. Linoleic and linolenic acids were also among major fatty acids with the percentage area of 16.29 and 14.58, respectively. The number of fatty acids in cultured Fabrea was less as compared to the natural ones and the oleic acid was followed by palmitic acid, palmitoleic acid, linoleic acid and stearic acid.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis, AOAC, Washington, DC.
  2. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263.
  3. Capriulo, G. M. and E. J. Carpenter. 1983. Abundance, species composition and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar. Ecol. Prog. Ser. 10:277-288.
  4. Ederington, M. C., G. B. McManus and H. R. Harvey. 1995. Trophic transfer of fatty acids, sterols and a tritepenoid alcol etween bacteria, a ciliate and the copepod Acartia tonsa. Limnol. Oceanogr. 40:860-867.
  5. Ellis, J. M. 1937. The morphology, division and conjugation of the salt marsh ciliate, Fabrea salina. Henneguy. University of California Publication in Zoology 41:343-388.
  6. Fernando, C. H. 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272:105-123. https://doi.org/10.1007/BF00006516
  7. Fujita, S. 1979. Culture of red sea bream, Pagrus major and its food. In: (Ed. E. Styezynska-Jurewicz, T. Backiel, E. Jaspers and G. Persoone). Cultivation of fish fry and its food. European Mariculture Society, Special publication No. 4. EMS, Bredene, Belgium 183-197.
  8. Harvey, H. R., M. C. Ederington and G. B. McManus. 1997. Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: shifts in response to changes in diet. J. Euk. Microbiol. 44(3):189-193.
  9. Javor, B. 1989. Dunaliella and other halophilic, eukaryotic algae. In: (Ed. B. Javor) Hypersaline environments, microbiology and biogeochemistry. pp. 147-158.
  10. Jeffries, H. P. 1970. Seasonal composition of temperate plankton communities fatty acids. Ecology 15:419-426.
  11. Khan, J. A. and A. D. Qayyum. 1971. Water, nitrogen and phosphorus in freshwater plankton. Hydrobiologia 37:531-536.(Bamidgeh). 42(3):77-83.
  12. Millamena, O. M., Penaflorida and P. F. Subosa. 1990. The macronutrient composition of natural food organisms mass cultured as larval feed for fish and prawns. Isr. J. Aquacult.
  13. Pal, A. K., H. S. Kushwah, S. B. Jadhao and A. B. Srivastara. 2000. Biological evaluation of residual mala hion in the meat of dipped hens: influence on lipid profile of erythrocytes and brain and pancreatic lipase and amylase activity. Asian-Aust. J. Anim. Sci. 13(8):1050-1053.
  14. Pandey, B. D. 2001. Ecology, biology and culture aspects of Fabrea salina. Ph.D. Thesis, University of Mumbai. p. 119.
  15. Pandey, B. D. and S. G. Yeragi. 2001. Culture of Fabrea salina under different feeding regimes. Abstr. National Symposium on Recent trends in life sciences and biotechnology. University of Mumbai, p. 127.
  16. Pandey, B. D. and S. G. Yeragi. 1998. Fabrea salina: live food for use in aquaculture. Fishing Chimes 18(9):17-18.
  17. Pandey, B. D. and S. G. Yeragi. 2000. The importance of live feeds in aquatic seed production. Infofish International 4:31-36.
  18. Pierce, R. W. and J. T. Turner. 1992. Ecology of plankton ciliates in marine food webs. Rev. Aquat. Sci. 6:139-181.
  19. Post, F. J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3:143-165. https://doi.org/10.1007/BF02010403
  20. Post, F. J., L. J. Borowitzka, M. A. Borowitzka, B. Mackay and T. Moulton. 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95-113.
  21. Repak, A. J. 1986. Suitability of selected bacteria and yeasts growing the estuarine heterotrich ciliate Fabrea salina (Henneguy). J. Protozool. 33:219-222. https://doi.org/10.1111/j.1550-7408.1986.tb05594.x
  22. Sanders, R. W. and S. A. Wickham. 1993. Planktonic protozoa and metazoa: production, food quality and population control. Mar. Microb. Food Webs. 7:197-223. the marine environment. In: Analysis of marine ecosystems (Ed. A. R. Longhurst). Academic Press, London 491-533.
  23. Sherr, B. F., E. B. Sherr and R. D. Fallon. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958-965.
  24. Sherr, E. B., B. F. Sherr, R. D. Fallon and S. Y. Newell. 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31:177-183.
  25. Sinku, R. P., R. L. Prasad, A. K. Pal and S. B. Jadhao. 2003. Effect of plant proteolytic enzyme on the physico-chemical properties and lipid profile of meat from culled, desi and broiler chicken. Asian-Aust. J. Anim. Sci. 16(6):884-888.
  26. Stoecker, D. K. and J. M. Cappuzzo. 1990. Predation on protozoa, its importance to zooplankton. J. plankton Res. 12:891-908.
  27. Vijverberg, J. and T. H. Frank. 1976. The chemical composition and energy contents of copepods and cladocerans in relation to their size. Freshwat. Biol. 6:333-345.
  28. Volacani, B. E. 1944. The microorganisms of the Dead Sea. In C. Weizmann Commemorative Volume 71-85.
  29. Watanabe, T., C. Kitajima and S. Fujita. 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review, Aquaculture 34:115-143.
  30. Wood, B. J. B. 1988. Lipids of algae and protozoa. In: Microbial lipids (C. Ratledge and S. G. Wilkinson). Academic Press, San Diego 807-868.
  31. Yufera, M. 1985. The population of Fabrea salina (Ciliata:Heterotrichida) in the Salterns of Cadiz bay. Invest. Pesq. Barc.49(4):493-500.

Cited by

  1. Feeding behaviour, feed selectivity and growth studies of mangrove killifish, Kryptolebias marmoratus, larvae using various live and formulated feeds vol.82, pp.4, 2008, https://doi.org/10.1007/s10641-007-9297-3
  2. (Temminck & Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture vol.46, pp.5, 2015, https://doi.org/10.1111/are.12265
  3. Evaluation of the Ciliated Protozoa, Fabrea salina as a First Food for Larval Red Snapper, Lutjanus campechanus in a Large Scale Rearing Experiment vol.20, pp.2, 2004, https://doi.org/10.1080/10454430802197383