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1. Introduction

Traditional inventory planning models for supply 
chains assume that all associated demand processes 
and revenue streams are exogenously determined. As a 
consequence, such models focus on operation cost 
minimization in the associated supply chains based on 
demand forecasts which are usually determined by 
marketing models. On the other hand, marketing 
models focus on determining pricing strategies and 
analyzing their impact on sales volumes and revenues, 
typically by rudimentary and simplistic treatment of 
operation cost in their supply chains(Chen, Federgruen 

and Zheng, 2001). However, it has been noticed that 
simultaneous decision on pricing and inventory policy 
leads to more profit in a single-echelon inventory 
system(Kunreuther and Richard, 1971; Whitin, 1955). 
Motivated by this notice, the combined approach of 
pricing and inventory policy has been intensively 
investigated for many single-echelon systems(Abad, 
2001; Karlin and Carr, 1962;  Pekelman, 1974). It has 
also been shown that the combined approach works 
better than any separated approach of treating the two 
problems individually. However, there are few studies 
about the combined approach for multi-echelon 
inventory systems. This provides the motivation for 
this paper to integrate the pricing and inventory 
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control issues together in a two-echelon inventory 
system with stochastic demand processes incorporated. 
The inventory system consists of a central warehouse 
and multiple retailers, where the warehouse distributes 
a single type of products to multiple retailers who will 
sell it to consumers. The retailers serve geographically 
dispersed and heterogeneous markets. Demands at 
each retail market arrive continuously but in a fashion 
of forming a non-linearly decreasing function of retail 
price in the market. The warehouse replenishes its 
inventory from an external supplier with ample 
capacity. Each retailer and the warehouse use the same 
(S-1, S) policy.

Generally, the (S-1, S) inventory policy is applied to 
situations where demand loss is not allowed or penalty 
changes are severe as in military service. Accordingly, 
the approach of combining the pricing issue and the 
issue of (S-1, S) inventory policy adaptation with lost 
sales allowed may be applied to dealing with 
expensive goods like jewelry or deluxe cars whose 
demand rates are subject to their price changes. 

It has been reported in the literature that if the price 
and multi-echelon inventory decisions are made 
together at the same time, then the associated supply 
chain will get more profits due to increased sales and 
decreased operation cost, and so make the supply 
chain customers satisfied. Thereupon, this paper will 
focus on constructing a model that combines both the 
multi-echelon inventory decision and the pricing 
decision in the associated supply chain.

The exact cost for a single-echelon lost sales 
inventory system having Poisson-distributed demands 
and fixed leadtime has been derived in Hadley and 
Whitin (1963). Sung and Yang (1988) have considered 
(s, S) inventory policy with limited backlogging and 
stochastic leadtime. Smith (1997) has demonstrated 
how to evaluate and find the optimal (S-1, S) 
inventory policy for an inventory system with lost 
sales allowed but without any replenishment cost 
allowed and with generally distributed stochastic 
leadtime allowed. A METRIC-model has been 
suggested as one of the most widely known 
multi-echelon inventory models in Sherbrooke (1986). 
Nahmias and Smith (1994) have considered a lost 
sales case for a multi-echelon system via the 
METRIC-model which has specifically considered 
periodic review batch order policies with partial lost 
sales allowed.

There are some marketing literatures studied on 
supply chain coordination between retailer and 
supplier which focuses on pricing. For example, 
Jeuland and Shugan (1983) have considered a simple 
pricing issue for a single-supplier and single-retailer 
system. Their model did not consider any inventory 
replenishment. The single-retailer part has been 

extended to multi-retailer settings by Ingene and Parry 
(1995). Monahan (1984) has determined prices subject 
to the restriction that both supplier and retailer use 
identical order intervals. Lal and Staelin (1984) have 
considered a pricing problem with non-identical 
retailers, under the assumption that all demand 
processes are not exogenously given and inventory 
replenishment is made infrequently.

  The approach of integrating inventory control and 
pricing issues together was first advocated by Whitin 
(1955). Both Whitin (1955) and Mills (1959) have 
addressed a single-period, single-location model to 
determine the associated single-price and supply 
quantity. Karlin and Carr (1962) have considered an in
finite horizon model for a single item, under the 
assumption that a single price needs to be specified at 
the beginning of the planning horizon. Chen et al. 
(2001) have considered both coordination (power-of- 
two) mechanism and non-coordination mechanism for 
multi-retailer systems under a periodic review 
inventory policy. Lee and Hong (2002) have integrated 
the pricing issue and the (r, Q) policy adaptation issue 
in a single-warehouse and single-retailer system with 
stochastic demand processes incorporated. 

The organization of this paper is briefed as follows. 
Section 2 presents the problem description and 
formulation. Section 3 analyzes the solution properties 
and proposes a solution algorithm based on the 
solution properties. Section 4 gives the computational 
results of some numerical examples, and Section 5 
states conclusions.

2.  Problem Description

The proposed problem considers a two-echelon 
inventory system with single central warehouse and 
multiple retailers as depicted in <Figure 1>. The 
retailers, which have different market sizes, serve to 
satisfy customer demands and replenish the associated 
stocks from the central warehouse. The warehouse, in 
turn, replenishes its stock from an outside supplier. 
The customer demand rate decreases exponentially as 
the price increases, while the retail price at each 
market is the same. The objective of the problem is to 
find the combined policy for inventory replenishment 
and pricing that maximizes long-run average profit in 
the associated two-echelon supply chain. There is a 
central planner who makes the pricing and inventory 
replenishment decisions. That is, the central planner 
makes both decisions simultaneously to maximize the 
total average profit of the two-echelon supply chain.

Demand process at each retailer follows a stationary 
Poisson process with constant arrival rate. When a 
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retailer is out of stock, any arriving demand at the 
retailer will be lost. However, when a stockout occurs 
at the warehouse, all demands from the retailers are 
fully backlogged and the backorders are filled 
according to a FIFO-policy. Each retailer and the 
warehouse use the same (S-1, S) policy.

The transportation time from the warehouse to any 
retailer is assumed to be constant. The transportation 
time from the external supplier to the warehouse is 
also constant. The external supplier is assumed to have 
infinite capacity, which means that the replenishment 
leadtime for the central warehouse is constant. The 
replenishment and backorder costs are assumed to be 
negligible, compared to the holding and stockout 
costs. Any units held in stock at the warehouse and the 
retailers incur holding costs per unit per time. A fixed 
shortage cost per lost customer is incurred at the 
retailers.

The objective of the problem is to maximize the 
long-run total average profit of the associated supply 
chain, which is defined as the difference between the 
associated total revenue and cost. The total revenue 
function can be easily defined by multiplying total 
sales by retail price. However, the cost function is 
more complex, so that some detailed analysis on the 
warehouse and the retailers should be made before 
deriving the associated cost function. The total cost 
consists of inventory holding costs at the warehouse 
and all the retailers, and penalty costs at all the 
retailers. Let us introduce the following notation:

 N : Number of retailers
 λ i : Demand intensity at retailer i, i = 1,2,…,N
 λ 0 : Sum of customer demands arrived at the 

          retailers = ∑
N

i=1
λ i 

 Λ : Demand intensity at the warehouse
 Li : Transportation time for delivery from the 
         warehouse to retailer i, i = 1,2,…,N
 L 0 : Transportation time for delivery from the 

         external supplier to the warehouse
 S 0 : Order-up-to level at warehouse
 Si : Order-up-to level at retailer i, i = 1,2,…,N
         ( S = S 1, S 2,...SN )
 h 0 : Unit holding cost per unit time at the 
         warehouse
 hi : Unit holding cost per unit time at retailer
        i, i = 1,2,…,N
 π i : Unit penalty cost for lost sale at retailer 
        i, i = 1,2,…,N
 c : Unit purchasing cost at the warehouse
 p : Unit retail price charged by retailer 
        i, i = 1,2,…,N
 Ai : Market size of retailer  i, i = 1,2,…,N
 α : Elastic coefficient of retail price p 
 Di : Costumer demand in the market served by 
         retailer i, i = 1,2,…,N =Aie-αp
 Gi(∙) : Sales revenue function at retailer
               i, i = 1,2,…,N
 C 0(∙) : Long-run cost function per unit time for 
                the warehouse in steady state
 Ci(∙) : Long-run cost function per unit time for 
                retailer i in steady state, i = 1,2,…,N
 C min

i ≡min s iC i(S i, L i) : minimum cost per unit 
                time for retailer i in steady state when the  
                leadtime, Li, is substituted for Li, i = 1,
                2,…,N, given fixed p
 TC(∙): Long-run total cost function for the 
                inventory system per time unit in steady 

                state =C 0(∙)+ ∑
N

i=0
C i(∙) 

  A queueing system analogy will be used when 
evaluating costs at the retailers, which has been 
adapted successfully in the analysis of inventory 
systems as in Sherbrooke (1986). It is noted that the 
demand process at the retailers follows a stationary 
Poisson process and the replenishment leadtime is 

Figure 1. Two-echelon inventory system (1:1:N).
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stochastic, since orders from the retailers can be 
delayed at the central warehouse due to stochastic 
stockouts. According to Palm (1938), it is also noted 
that the steady state occupancy level is Poisson 
distributed with mean λL, where λ is the mean arrival 
rate and L is the mean service time, which holds for 
i.i.d. service times. However, the stochastic leadtimes 
in the proposed problem are evidently not independent 
to each other. By the way, by disregarding any 
associated correlation, the number of outstanding 
orders will be approximated in this paper as to follow 
a Poisson distribution, as adapted in the METRIC- 
approximation in Sherbrooke (1986). 

In the situation where lost sales are allowed, the 
corresponding queueing system of interest can be 
modeled as an M/G/S/S queue with S servers, each 
with generally distributed service time and no 
queueing allowed. If the service times are independent 
random variables with mean L , then the associated 
Erlang's loss formula can be viewed as stating the 
steady-state distribution of occupancy level at the 

retailer as
 0

( ) / !( ) 0
( ) / !

p j
s i

S p n
in

Ae L jq j j S
Ae L n

α

α

−

−
=

= ≤ ≤
∑

, where
 

q s(j) is the probability that j servers (out of S) are 
occupied in steady state. Based on the METRIC 
approximation explained above, the number of 
outstanding orders at the retailer can be modeled as 
q s( j) . 

Let the mean replenishment leadtime at retailer i be 
Li and let q si( j) be the steady-state probability of j 

outstanding orders, given a desired-stock level Si. 
Then, the expected number of lost sales per unit time 

is derived as ( ) ( )i is sp
i i i i i iq S Ae q Sαλ −=  and the 

expected number of units in stock is derived as

∑
S i

j=0
(S i- j)q

S i
i (j)=S i-[1-q

S i
i (S i )]A ie

-αp L i . 
The demand rate from retailer i without loss allowed 
is derived as (1-q S ii (S i ))A ie

-αp. Therefrom, the 
associated total cost function at retailer i  can be 
derived as  

   ( , , ) ( )p Si
i i i i i i iC S L p Ae q Sα π−= +  

                     ( [1 ( )] )Si p
ii i i i ih S q S Ae Lα−+ − − (1)

In the backorder case, the demand process at the 
warehouse follows the same stationary Poisson 
process as at the retailers. However, in the lost sales 
case, the warehouse may not have the same Poisson 
process, because any demand from customers may be 
lost during leadtime intervals for the orders of the 
retailer placed to the warehouse. For example, if the 

basestock level at a retailer is one, then the retailer 
leadtime will be included in the inter-arrival time 
interval between two successive demand arrivals at the 
warehouse from the retailer so that all the demands 
from customers arrived during the leadtime will be lost 
due to stockout at the retailer. Therefore, the associated 
demand process at the warehouse does not remain as 
the original Poisson process any longer. The remaining 
demand process will be rather complex to characterize. 
Therefore, in this paper the demand process at the 
warehouse will be approximated as a stationary 
Poisson process but with adjusted arrival rate. The 
arrival rate is assumed to be Λ where Λ depends on 
how much demand is lost at all the retailers, which is 
determined as 

1
(1 ( ))i

N
Sp

i i i
i

Ae q Sα−

=

Λ = −∑ (2)

Now, given a fixed deterministic leadtime L 0, we 
can find the average holding cost incurred at the 
warehouse as a function of Λ and S 0. 

0
0

0 0 0 0 0
0

( )( , ) ( ) exp( )
!

S j

j

LC S h S j L
j=

ΛΛ = − −Λ∑ (3)

where Λ is the function of Si and p, so that Eq. (2) 
can be incorporated as 

 
0 0

1
0 0 0 0

0

( (1 ( )) )
( , , ) ( )

!

i

N
Sp j

S i i i
i

j

Ae q S L
C S S p h S j

j

α−

=

=

−
= −

∑
∑

ur

0
1

exp( (1 ( )) )i

N
Sp

i i i
i

Ae q S Lα−

=

− −∑ (4)

The mean delivery delay can also be derived in 
consideration of stockout at the warehouse by using 
B 0, the average number of backorders at the 
warehouse, which can be calculated as

0

0
0 0 0

1

( )( ) exp( )
!

j

j S

LB j S L
j

∞

= +

Λ= − −Λ∑ (5)

Then, the Little’s formula is applied to obtain the 
average delivery delay, B 0/Λ . Therewith, the mean 
leadtime for retailer i is derived as 

0 /i iL L B= + Λ (6)

The total revenue function can be represented as 

( , ) (1 ( ))( )iSp
i i i i iG S p Ae q S p cα−= − − (7)
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The total cost function is obtained in the associated 
supply chain as

0 0
1

( ) ( , , ) ( , , )
N

ii i
i

TC C S S p C S L p
=

⋅ = +∑
ur

(8) 

As mentioned above, a central planner makes the 
pricing and inventory replenishment decisions together 
so as to maximize the long-run average profit in the 
two-echelon supply chain, which is equal to the total 
revenue minus cost, expressed as

   0
1

( , , ) ( , )
N

i i
i

TP S S p G S p
=

=∑
ur

(9)

            0 0
1

( , , ) ( , , )
N

ii i
i

C S S p C S L p
=

 − +  
∑

ur

It can be represented as the function of S 0, S i, and 
p which is given as  

0
1

( , , ) (1 ( ))( )i

N
Sp

i i i
i

TP S S p Ae q S p cα−

=

= − −∑
ur

                
0 0

1
0 0

0

( (1 ( )) )
( )

!

i

N
Sp j

S i i i
i

j

Ae q S L
h S j

j

α−

=

=

−
− −

∑
∑

   0
1

exp( (1 ( )) )i

N
Sp

i i i
i

Ae q S Lα−

=

− −∑ (10)

1
( ) ( [1 ( )] )i i

N
S Sp p

ii i i i i i i i i
i

Ae q S h S q S Ae Lα απ− −

=

− + − −∑

3.  Solution Procedure

The objective of the proposed problem is to find the 
optimal inventory positions S *0 and and S * the 
optimal price p * together which maximize the total 
supply chain profit. The total profit is calculated by 
subtracting the total cost at the warehouse and all the 
retailers from the total revenue of the retailers. 
Inventory holding costs at the warehouse and all the 
retailers and penalty costs at all the retailers for lost 
sales cases are considered. To maximize the total 
profit, the total revenue must be maximized, while the 
total cost is minimized. As shown in Eq. (10), the total 
profit function is non-linear so that each involved 
decision variable is hard to clearly find its mathema- 
tical feature. Therefore, the near-optimal solution will 
be found by using a heuristic search algorithm. For the 
search, several solution properties will be characteri- 
zed in this chapter.  

Lemma 1  
( , , ) , .ii i i iC S L p is convex with S given fixed L and p

Proof. ( , , )ii iC S L p  can be proved to be convex in Si  
with Li fixed, referring to Smith (1997), and the value 
of p is not subject to Si’s. This implies that 

( , , )ii iC S L p  is convex too, given fixed p . 
This completes the proof.

Given Li and p, the optimal order-up-to-level Si, 
which minimizes the cost of the retailers, is obtained 
by a local search procedure. Li is a function of Λ and 
S0 as shown in Eqs. (5) and (6). This implies that the 
optimal order-up-to-level Si can be found based on 
Lemma 1. The retail price p and order-up-to-level at 
the warehouse S0 are decision variables and Λ is a 
value calculated from Eq. (2). For the given random 
variable Λ, Si is calculated, with which Λ is updated 
as in Eq. (2). Therewith, given p and S0, the optimal 
value of Si can be calculated.

Lemma 2

  , min ( , ) min ( , )
i is i i i s i i iGiven p fixed C S L C S L≤

Proof. Let min
iC  be the minimum cost per unit time 

for retailer i in steady state when the leadtime, Li , is 
substituted for Li , i = 1,2,…, N, given fixed p. It is 
represented as min ( , )

is i i iC S L . Then, it is needed to 

show that min ( , ) min ( , )
i i

i is i i i s i i iC S L C S L for L L≤ ≤ . 
Let li be an arbitrarily chosen leadtime, where 

ii iL l L≤ ≤ . Consider the cost ( , )i i iC S l , where Si is 

set at its optimal value for each li . Start with i il L=  
and let li be continuously lowered until it reaches the 
level Li  as i il L= . Since ( , )i i iC S l  is a continuous 
function of li , for fixed Si , it is also a continuous 
function of li . Moreover, the fact that Si  minimizes 
the cost ( , )i i iC S l implies the relation ( , ) (i i i i iC S l C S≤

1, )il− . For notational simplicity, the index i will be 
omitted from all the variables. Thereupon, let 

pAe αλ −= .
It can then be shown that 

( , ) (1 ( )) ( )( ( 1)s sC S l h q S h l q S
l

λ λ λ πλ∂ = − − + + −
∂

                     2( ) ( ) ).s sq S q S− +    ①
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Moreover, the relation ( , ) ( 1, )C S l C S l≤ −  implies 
that

1 ( 1) ( ).s sh q S q S
h lλ λπ

−≤ − −
+ ②

Let 
1 ( , ) .

( )
C S l

h l lλ λ πλ
∂Κ =

+ ∂  From Eq. ①, it holds 
that 

2( ( ) 1) ( 1) ( ) ( ) .s s s sh q S q S q S q S
h lλ πλ

Κ = − + − − +
+

Multiplying the right-hand side of Eq. ② by K g i v e s 
(recalling that ( ) 1sq S <  )

    1( ( 1) ( ))( ( ) 1) ( 1)s s s sq S q S q S q S−Κ ≥ − − − + −   
    

2( ) ( )s sq S q S− +   

    

1 1

1 1

( 1) ( ) ( 1) ( 1)
( 1) ( ) ( ( 1) ( ))

0.

s s s s

s s s s

q S q S q S q S
q S q S q S q S

− −

− −

= − − − + −
= − − −
=     ③

(Detail expression of ③)
From the definition of ( 1)sq S − , we have 

( 1) ( ) Ss sq S q S
Lλ

 − =  
  . It can be shown following 

equation:

1 ( ) ( )1( 1) ( 1) ,
! !0 0

1( )
( 1)!( 1) .

( )
!0

1 ( ) ,
!0

( )1( 1) ( 1)
!

n ns sL Ls sq s q s
n nn n

sL
sswhere q s ns L

nn
ns LLet U

nn
sLs sq s U q s U

S

λ λ

λ

λ

λ

λ

   −   − − = −∑ ∑   
   = =   

−

−− =

∑
=

−
= ∑

=
  − − = − + 
  

( ) 11( 1) ( 1) ( 1)
!

( ) 1( 1) ( 1)
!

1( ) ( 1)

sLs s sq s q s q s
S U

Ls sq s q s
S

s sq s q s

λ

λ

− − − − = −

−= − −

−= −

Then we have 1 1( 1) ( 1) ( )s s s sq s q s q s q− −− − − =  
( 1)s − .

Consequently, K ≥ 0, so that ( , )i i iC S L  is a 
non-decreasing function for iiL L≤ . Let ( )iS L =
arg min ( , )

is i i iC S L . Then, the relation ( ( ), )i i iC S L L ≤
( ( ), )i i iC S L L  holds. Let ( ) arg min ( , )

ii s i i iS L C S L= . 
Then, the relation ( ( ), ) ( ( ), )i i i i i iC S L L C S L L≤  holds. 
Therefore, the relation min ( , ) min

i is i i i sC S L ≤

( , )ii iC S L  for iiL L≤   holds. 
This completes the proof.

Lemma 3
 

0 0 0 0 0 0, ( , ) ( , )Given p fixed C S C S holds with Sλ ≤ Λ

Proof.  λ0 is the sum of customer demands arrived 
at all the retailers, so that 0λΛ ≤ . Then, it is only 

needed to show that 
0 ( , ) 0oC S∂ Λ ≤
∂Λ , which is shown 

as 

0
0 0 0

( , ) exp( )oC S h L L∂ Λ = − −Λ
∂Λ

                      

0 1
0 0

0 0
1

( ) ( )( )
! ( 1)!

S j j

j

L LS S j
j j

−

=

  Λ Λ+ − −  −  
∑

                   

0 1
0

0 0
0

( )exp( )
!

0.

S j

j

LhL L
j

−

=

Λ= − −Λ

≤

∑

This completes the proof. 

Theorem 1

0, ( )lbGiven p fixed TC S is a lower bound for
,the cost function

min
0 0 0 0

0
( ) ( , ) .

N

lb i
i

TC S C S Cλ
=

≡ +∑  

Proof. Axsater (1993) has proved the convexity of 
0 0 0( , )C S λ   in S0. By Lemma 1, 2, and 3, given p 

fixed, it is found that 0( )lbTC S  is a lower bound for 

the cost function 
min

0 0 0 0
0

( ) ( , )
N

lb i
i

TC S C S Cλ
=

= +∑ . 
Moreover, the cost function 0( )lbTC S  is convex in S0. 

This completes the proof.
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Theorem 2
If the probability of lost sales at the

( ) ,iS
i iretailers q S is zero
( , )i ithen G S p has the maximum value at  

1 .p c
α

= +  
 

Proof. It is easy to show that 
( , ) pi iG S p Ae

p
α−∂ =

∂
( 1 ).c pα α+ −  If the probability of lost sales at the 
retailer ( )iS

i iq S  is zero, then ( , )i iG S p  is 
differentiable in p , so as to find its maximum value at 

1p c
α

= +  .
This completes the proof.

Theorem 3
If the probability of lost sales at the retailers

( ) ,iS
i iq S is zero
and p is allowed to vary over a finite

2[ , ] ,interval c c only
α

+ ( , )i ithen G S p is

.concave

Proof. If the probability of lost sales at the retailer 
( )iS

i iq S  is zero, then ( , )i iG S p  is differentiable in p. It 

can be shown that 
2

2

( , ) ( ( ) 2).pi iG S p Ae p c
p

α α α−∂ = − −
∂

It holds that pAe α−  and α are positive value. If p 

have the value at 
2c p c
α

≤ ≤ + ,  then 
2

2

( , ) 0i iG S p
p

∂ ≤
∂ .

This completes the proof.
 
Let notations with superscript * denote the maxi- 

mum supply chain profits under the optimal pricing 
and inventory policy and notations with superscript 0 
denote the maximum supply chain profits with the 
probability of lost sales being zero. Then, the total 
revenue of the supply chain has the maximum value at 
p which is equal to the reciprocal number of elastic 
coefficient plus the purchasing cost. At this point, p0 
denotes the current p. Given the retailer price p fixed, 
the optimal order-up-to-level at the warehouse S0 and 
the optimal order-up-to-level at the retailers Si  are 
found as minimizing the total cost in the supply chain. 
However, it cannot be guaranteed that this value 
maximizes the total revenue. Therefore, to find the 
optimal S0 and Si with various retail prices p, it is 

needed to choose the optimal solutions which 
maximize the total profit.

Now, the solution procedure is derived. The 
procedure is designed to enumerate with all the 
possible p and S0 values. It is natural that for a profit 
maximization problem, p and S0 cannot be negative. 
Let *

0( )TC S  be the minimum value of total cost (TC) , 
given a fixed value of S0. By Lemma 1, given Li and 
p, the expected cost function for retailer i, (Ci), being 
represented by the associated inventory cost is convex 
in Si. Therefore, the optimal Si which minimizes the 
retailer inventory cost (Ci) can be found, given Li and 

p. By Theorem 1, the cost function 0( )lbTC S   is 
convex in S0, so that a search can be made for the 
optimal S0 such that S max0  satisfies 0

min *( )x S TC x≤ ≤
max

0( )lbTC S . In conclusion, given p fixed, the required 
S0 and Si   values,  i = 1,2,…, ,N can be calculated 

from 0 0,min ( , )S S TC S Sur

ur
, referring to <Figure 2>.

TC*(S0)

TClb(S0)

minx≤S0
TC*(x)

S0S0
max

TC*(S0)

TClb(S0)

minx≤S0
TC*(x)

S0S0
max

TC*(S0)

TClb(S0)

minx≤S0
TC*(x)

S0S0
max

Figure 2. Illustration of the abortion criteria.
  
It is noted that each retail price has to be larger than 

the purchasing cost at the warehouse. Therefore, p is 
bounded from the purchasing cost. However, the upper 
bound of p is not easy to derive analytically due to the 
complexity of the total revenue function in Eq. (7). 
Therefore the upper bound will be derived based on 
experiments. Before describing the upper bound 
search procedure, it is noted that according to the 
results of Theorems 2 and 3, the total revenue reaches 
at the maximum at 

0 1p c
α
 = + 
  , under the situation 

where the probability of lost sales is zero. Actually, if 
the probability of lost sales is zero, then S0 and Si 
values must be infinite. This is, however, not a 
reasonable solution. Rather, the optimal retail price p*, 
which maximizes the total profit, can be considered to 
be near p0, since lost sales may not appear under the 
(S-1, S) inventory policy. Therefore, the boundary of 
retail price p could be searched for within a reasonable 
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range near p0. 
  In the upper bound derivation, it is assumed that 

the upper bound is determined within several multiples 
of △, based on the fact that the interval between the 
reasonable lower bound ( :LBP c= ) and p0 is △. △ is 
defined as the reciprocal number of elastic coefficient, 
since the elastic coefficient is represented as the 
change of demand subject to the change of price

1
α

 ∆ = 
  . To determine a reasonable upper bound of p , 
through various cases the near-optimal solution is 

searched for within a range from 
0 1p c

α
 = + 
   to 

0 1p + ∆ , 0 2p + ∆ ,…, 0 5p + ∆ . After all the cases 
being searched for the near-optimal solution, the 
optimal is found within the 0 1p + ∆  range. Thereupon, 
it is recommended that p0 plus one delta ( 0 1p + ∆ ) is 
assigned as the upper bound of retail price, as shown 
in Fig. 3. It is noted that the upper bound is the same 
as the concavity range in Theorem 3. This implies that 
the upper bound derived through experiments is the 
worst case upper bound.

Δ

PLB p0 PUB p

TR

1 c
α

+

Δ

PLB p0 PUB p

TR

1 c
α

+

Figure 3. Illustration of bound of retail price.

Solution Procedure: 

Step 1: Assign the lower bound and upper bound of 
retail price ( ,LBP UBP ) and the step length
(δ ).

     i) Set  : LBp P= , UBP , δ , goto Step2.

Step 2: Find the total cost function value, min *TC , 
under given p .

     i)    Set max
0 0S =  and max

0( )lbTC S = ∞ .
     ii)   Set 0 0S =  and  minTC = ∞ .
     iii) Set k=0 and Λ=λ0.
     iv) For each i = 1, 2,…, N, calculate Li by Eqs. 

            (5) and (6) and set ( ) argmin ( ( , , ))i s i iS k C S L p=

     v) If k > 0, and ( ) ( 1)i iS k S k= −  for all i = 1, 
            2,…, N, then goto vi), else calculate Λ
            by (2), set k := k +1 and goto iv).

     vi) Set 
*

0 0 0
0

( ) ( , ( ), ) ( ( ), , )
N

i i i i
i

TC S C S S k p C S k L p
=

= +∑ . 

If 
*

0 min( )TC S TC< , then 
*

min 0( )TC TC S=   
            and let 0 0

optS S=   and ( )opt
i iS S k=   for i = 1, 

            2,…, N. If 
max

min 0( )lbTC TC S≤ , then STOP, 

            else set 1o oS S= + , and check if  
max

0 0S S≥ , 
            then set 

max max
0 0 1S S= +  goto ii), else goto iii).

Step 3: Calculate the total profit maxTP  
     i)  Set *TP G TC= −  , calculate TP . 
         If  UBp P≥  then STOP. Else set  p p δ= + , 
         goto Step2.
     ii) Find * arg min ( ( ))pp TP p= . Then  maxTP = 

         0( , | *)opt optTP S S p
uuur

.  

To search within the lower and upper bounds of 
retail price p, the step length ( δ) should be determined. 
To determine the step length of retail price, 
experiments with step lengths ( δ)=0.2, 0.5, 1, 1.5 are 
performed with the parameter set given in Section 4. 
As the step length ( δ) increases, the gap between the 
optimal solution and the solution of the proposed 
heuristic algorithm increases, and the calculation time 
decreases, as shown in <Figure 4> and <Figure 5>. 
Therefore, considering the trade-off between the 
solution gap and the calculation time, a reasonable 
value of the step length ( δ) must be found. As shown 
in <Figure 4> and <Figure 5>, it is certain that the step 
length ( δ) has a reasonable value at the value 1.
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Figure 4. Illustration of the relation between 
       calculation time and step length.
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Figure 5. Illustration of the relation between      
     solution gap and step length.  

4.  Computational Results

This section consists of three parts. The first part 
presents numerical results with the case of identical 
retailers with respect to market size. The second part 
presents numerical results with the case of different 
retailers. The last part shows the efficiency of the 
proposed heuristic algorithm in terms of calculation 
time and solution gap computed with various test 
instances in comparison with that of a full search 
algorithm. In order to examine the efficiency of the 
proposed heuristic algorithm, 6 different problems are 
considered and the number of retailers is 2 for each 
problem. For each test problem, the best order-up- 
to-level and retail price are obtained using the pro- 
posed heuristic algorithm. The experimental problem 

set provides 98% service level which means a very 
reliable set. The proposed algorithm is tested with 
various parameter settings to investigate solution 
sensitivities. 

To test performance of the proposed algorithm, a full 
enumeration search is made iteratively at each unit 
increment of discrete p values. In the research, the 
boundary of the retail price p  is set at the same range 
as in the proposed heuristic algorithm, and the ranges 
of S0 and Si are set at 4 times those of the proposed 
heuristic algorithm. The calculation time of the full 
search is set at the time for single unit iteration 
multiplied by the number of iterations. In this paper, 
the retail price is considered as a discrete function, 
since the retail price is determined by unit value on 
each customer arrival.

All the computational experiments are tested on 
IBM PC(Pentium IV processor / 1.7GHZ, 512MB 
memory). The computational results are given below.

4.1  The numerical Results with the Case of 
       Identical Retailers

6 problems are considered when the retailers receive 
demands arrived at the same demand rate (i.e. same 
market size). It is assumed that the market size is 1000 
for the first 3 problems. And the market size of the last 
3 problems is set at the value 1200. On each case, the 
transportation time from the warehouse to each retailer 
is varied from 1 to 2. The average gap of total profit 
between the heuristic solution and full search solution 
is about 0.814303%. The average gap is calculated as

Table 1.  The numerical results with two identical retailers case 

# A Li

Heuristic Algorithm Full Search Algorithm
GAP(%)

S heu
0 S heu

i p heu TP heu S opt
0 S opt

i p opt TP opt

1 R1 1000 1 5 18 50 114.99486 5 17 51 115.96577 0.837243R2 18 17

2 R1 1000 2 4 21 52 111.81833 5 24 51 113.04188 1.082393R2 21 24

3 R1 1000 1 5 17 51 113.34512 5 18 51 114.31446 0.847961R2 2 23 24

4 R1 1200 1 5 19 51 140.78396 5 20 51 140.97873 0.138158R2 19 20

5 R1 1200 2 5 27 51 136.21141 5 29 51 137.77732 1.136548R2 27 29

6 R1 1200 1 5 19 51 138.1245 5 20 51 139.29952 0.843517R2 2 28 29
AVG 0.814303
(C = 40, πi = 15, hi= 1, h0 = 0.5, α = 0.1 ) 



A Combined Approach of Pricing and (S-1, S) Inventory Policy in a Two-Echelon Supply Chain with Lost Sales Allowed 155

100full search solution heuristic solution
full search solution

− ×

The order-up-to-level of the retailer increases, while 
the total profit decreases, as the transportation time 
gets larger. This indicates that the possibility of lost 
sales grows as the transportation time becomes larger. 
Therefore, to prevent the increase of the cost, the stock 
level at the retailers must be larger. As the stock level 
at the retailers increases, the holding cost increases, 
which results in increase in the total cost and decrease 
in the total profit. The order-up-to-level of the retailers 
changes much due to the change of the market size 
and the transportation time. It can be interpreted that 
the change of the market size and the transportation 
time influences much more on the order-up-to-level of 
retailers than on the retail price. The problem data and 
results are presented as in <Table 1>. 

The experiment is extended to consider a larger 
problem having 5 identical retailers. The market size 
of 2000 or 1000, and the retailer shortage costs of 25, 
20, 15. The resulting average gap of total profit 
between the heuristic solution and full search solution 
is found at about 1.472063%, implying that the average 
gap increases as the number of retailers increases. 

Moreover, the order-up-to-level of the retailer increases 
as the retailer shortage cost gets larger. This implies 
that more inventories are needed to reduce lost sales.

4.2  The Numerical Results with the Case of 
Different Retailers 

6 problems are considered with two different retailers. 
It is assumed that the market sizes of each market are 
1000 and 1100(10% increasing), respectively, for the 
first 3 problems. Those of the last 3 problems are 1000 
and 1200 (20% increasing), respectively. The variation 
of transportation time is the same as the problems of 
Section 5.1. 

The average gap between the heuristic solution and 
full search solution is about at 0. 719457%. The order- 
up-to-level and the gap between the heuristic solution 
and full search solution increase as the transportation 
time gets larger. The possibility of lost sales increases 
as the transportation time increases, so that the gap 
with the optimal becomes larger. Between the different 
retailers, the order-up-to-level is larger for the retailer 
who considers larger market size. The problem data 
and results are presented as in <Table 3>. From 
<Tables 1, 2 and 3>, it can be stated that the proposed 

Table 2.  The numerical results with five identical retailers case

# A πi Heuristic Algorithm Full Search Algorithm
GAP(%)

S heu
0 S heu

i p heu TP heu S opt
0 S opt

i p opt TP opt

1

R1

2000 25 5

8

72 37.82067 5

8

73 38.3887 1.479667
R2 8 8
R3 8 8
R4 8 8
R5 8 8

2

R1

2000 20 5

7

73 39.53718 5

7

74 40.1375 1.495676
R2 7 7
R3 7 7
R4 7 7
R5 7 7

3

R1

1000 20 2

3

76 10.98872 3

3

77 11.13774 1.338009
R2 3 3
R3 3 3
R4 3 3
R5 3 3

4

R1

1000 15 2

3

75 12.65575 3

3

76 12.85825 1.5749
R2 3 3
R3 3 3
R4 3 3
R5 3 3

AVG 1.472063
(C = 60, L i = 2, hi = 2, h0 = 1, α = 0.1 )
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algorithm is effective. 
<Table 4> table shows the numerical results on the 

change of the cost parameter. As shown in <Table 4>, 
the retail price increases and the order-up-to-level 
decreases, as the purchasing cost gets larger. The 
order-up-to- level increases as the retailer shortage 
cost increases. As seen in <Table 3>, the order-up-to- 
level decreases and the total profit decreases, as the 
retailer holding cost increases.

A sensitivity analysis is performed to study the 
effect of retail price p and order-up-to-level of the 
retailer Si on the total profit. As shown in <Figure 6>, 
the total profit variation is steeper with retail price p 
than order-up-to-level of the retailer Si. This implies 
that retail price has more influence on the variation of 
total profit than order-up-to-level of retailer. 

Figure 6. Illustration or the variation of total 
    profit.
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Table 3.  The numerical results with different retailers case

# A Li

Heuristic Algorithm Full Search Algorithm
GAP(%)

S heu
0 S heu

i p heu TP heu S opt
0 S opt

i p opt TP opt

1
R1 1000

1 5
16

51 121.59917 5
17

51 122.14703 0.448522
R2 1100 17 19

2
R1 1000

2 5
25

50 118.46084 5
24

51 119.20404 0.623472
R2 1100 27 26

3
R1 1000 1

5
16

51 120.02456 5
17

51 120.65188 0.519938
R2 1100 2 27 26

4
R1 1000

1 5
16

51 127.6682 5
17

51 128.41855 0.584299
R2 1200 19 20

5
R1 1000

2 5
23

51 123.96583 4
25

51 125.37256 1.122039
R2 1200 27 29

6
R1 1000 1

5
16

51 125.51272 5
17

51 126.80419 1.018472
R2 1200 2 18 28

AVG 0.719457
(C = 40, πi = 15, hi= 1, h0 = 0.5, α = 0.1 )

Table 4.  The numerical results with various 
   cost parameters

C S heu
0 S heu

i p heu TP heu

20 15
68

35 905.258
67

30 10
39

41 350.073
42

40 5
16

51 121.5992
17

50 3
7

60 40.03397
8

60 1
3

73 11.92409
3

π S heu
0 S heu

i p heu TP heu

10 5
15

51 121.5576
17

15 5
16

51 121.5992
17

30 5
17

51 120.3384
17

hi S heu
0 S heu

i p heu TP heu

1 5
16

51 121.5992
17

2 5
13

52 106.3685
14

5 5
11

52 70.39085
12

( 1000, 1100, 1, 0.1 )i iN A L α= = ==2,
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4.3  The Efficiency of the Proposed Algorithm
As shown in <Figure 7>, the optimal value calcula- 

tion time in the full search highly increases, as the 
market size increases, while the calculation time of the 
proposed algorithm shows little increase. This is due 
to the exponential increase of iterations in the full 
search, as the demand increases. <Table 5> indicates 
that the heuristic algorithm takes about 3%~4% off 
from the full search calculation time. From computa- 
tional point of view, the proposed algorithm is 
efficient and simple.

Figure 7.  Illustration of the relation between 
     calculation time and market size.
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Table 5.  Calculation time for two retailers case 

INSTANCE
Retailers

Same Different
Heuristic Optimal Heuristic Optimal

1 425 29359 509 32545
2 1121 40083 1513 36025
3 822 32541 1241 34521
4 773 32956 590 32356
5 2589 39138 1857 34947
6 1622 36213 1426 33955

AVG 122.333 35048.33 1189.333 34058.17

5.  Conclusions 

This paper considers a combined model of pricing and 
(S-1, S) policy for a single-warehouse, multi-retailer 
inventory system with lost sales allowed. For the 
model evaluation, the well-known METRIC-approxi- 
mation is used. Most of the multi-echelon models 
consider inventory policy only, while this paper 
integrates retailer pricing and inventory control issues 
together to maximize long-run total profit in the 
associated supply chain. The objective function of the 

integrated model consists of sub-functions of long-run 
total revenue and total cost (consisting of holding cost 
and penalty cost). Generally, the (S-1, S) inventory 
policy is applied to situations where demand loss is 
not allowed or penalty changes are severe as in 
military service. Accordingly, concerned with com- 
bining the pricing issues and the lost sale issue 
together, the proposed algorithm may be applied to 
dealing with expensive products like jewelry or deluxe 
cars whose demand rates are subject to their price 
changes.

A heuristic algorithm is derived to search for each 
approximate retail price. A guideline for the associated 
search boundary and step size determination is also 
provided as required in the search.

The effectiveness and efficiency of the proposed 
algorithm are also tested with some numerical pro- 
blems in comparison with their full search results. 
From the computational results, it is found that the 
performance of the proposed algorithm is quite 
effective and simple to use. 

For further study, it may be interested in the 
extensions of the proposed model to incorporate some 
other order policies including (T, Q) or (R, Q) and 
additional considerations including emergency lateral 
transshipment and multi-product. Another interesting 
research issue is to derive any better upper bound of 
the retail price.
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