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INTUITIONISTIC FUZZY SUBGROUPS AND COSETS

KuL Hur, SU YouN JANG AND HEE WON KANG

Abstract. In this paper, we obtain the intuitionistic fuzzy sub-
groups generated by intuitionistic fuzzy sets and some properties
preserved by a ring homomorphism. Furthermore, we introduce the
concept of intuitionistic fuzzy coset and study some of it’s proper-

ties.

0. Introduction

In 1965, Zadeh [14] introduced the concept of fuzzy sets. After that
time, several researchers|6,10,12,13] have applied the notion of fuzzy sets
to algebra.

In 1986, Atanassov[l] introduced the concept of intuitionistic fuzzy
sets as the generalization of fuzzy sets. Recently, Coker and his col-
leagues [4,5,7] applied the notion of intuitionistic fuzzy sets to topol-
ogy. In 1989, Biswas[3] introduced the concept of intuitionistic fuzzy
subgroups and investigated some of it’s properties. In 2003, Baldev
Banerjee and Dhiren Kr. Basnet|2] studied intuitionistic fuzzy subrings
and ideals using intuitionistic fuzzy sets. Moreover, Hur and his col-
leagues|[8,9] redefined the concepts of intuitionistic fuzzy subgroupoids,
subgroups and rings, and studied some of their properties.

In this paper, we introduce the concept of intuitionistic fuzzy cosets
and investigate some of it’s properties. Furthermore we obtain the in-
tuitionistic fuzzy subgroups generated by intuitionistic fuzzy sets, and

investigate some properties preserves by a ring homomorphism.
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1. Preliminaries

We will list some concepts and one result needed in the later sections.

Forsets X, Y and Z, f = (f1, f2) : X —» Y x Z is called a complex
mapping if f1: X - Y and fo: X — Z are mappings.

Throughout this paper, we will denote the unit interval [0,1] as I.

Definition 1.1{1]. Let X be a nonempty set. A complex mapping
A = (pa,va) : X = I x I is called an intuitionistic fuzzy set (in short,
IFS)in X if pa+vs < 1, where the mapping ppa : X — Tandva: X — 1
denote the degree of membership (namely p4(z)) and the degree of non-
membership (namely v4(z)) of each € X to A, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[1]. Let X be a nonempty set and let A = (j24,74) and
B = (up,vp) be IFSs in X. Then

(1) Ac Biff us < up and vy > vp.

(2 A=Biff AC Band B C A.

(3) A° = (va, pa).

(4) AN B = (ua A B, va V vB).

(5) AUB = (paV pnB,va Avp).

(6) []A = (pa, 1 — pa), < > A= (1—-va,va)

Definition 1.3[4]. Let {A;}ic; be an arbitrary family of IFSs in X,
where A; = (pa,,va,) for each i € J. Then

(a) NAi = (Ara, Vva,)
(b) UAl = (V.U'Aw/\VAi)'

Definition 1.4[4]. 0. =(0,1) and 1. = (1,0).
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Definition 1.5[4]. Let X and ¥ be nonempty sets and let f: X — Y
be a mapping. Let A = (14,v4) be an IFS in X and B = (up,vg) be
an IFS in Y. Then

(a) the preimage of B under f, denoted by f~!(B), is the IFS in X
defined by:

FHB) = (fus), f (vB)),

where f~1(up) = 5 o f.
(b) the image of A under f, denoted by f(A), is the IFS in Y defined
by:
F(A) = (f(pa), f(va)),

where for each y € Y

Funy) = 4 Veerwpal@) 517w #0
0 it f7(y) =0,
and
flva)y) = {A%f*(w va(T) ff fHy) #6,
! if f1(y) =0

Result 1.A[4, Corollary 2.10]. Let A, A;(i € J) be IFSs in X, let
B,Bj(j e K)IFSsinY and let f : X — Y be a mapping. Then
(1) A1 C A2 = f(A1) C f(Az).
(2) B1 C Ba = f7'(B1) C f7'(Ba).
(3) A fHf(AD.
If f is injective, then A = f~1(f(4)).
(4) f(fH(B)) C B.
If f is surjective, then f(f~1(B)) = B.

(5) f~1(U By) Uf‘( )
(6) ﬂB) N
(7) F(U As) A).
(S)f(ﬂA)Cﬂf( i)-

If f is injective, then f({)A;) = [ F(A:).
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(9) f(1.) = 1., if f is surjective and f(0.) = 0~.

(10) f~1(1.) = 1. and f~1(0.) = 0~.

(11) [f(A)]° C f(A®), if f is surjective.

(12) £1(B°) = [ (B

Definition 1.6[4]. Let X beaset and let A\, p € I with0< A+ p <1
Then the IFS C, ,) in X is defined by: for each z € X, Cy, ,)(z) =

(A u), Le, peg, (@) = Aand ve, |, () =

Definition 1.7[8]. Let (G, -) be a groupoid and let A € IFS(X). Then
A is called an intuitionistic fuzzy subgroupoid ( in short, IFGP) of G if
for any z,y € G, palzy) > pa(z) A paly) and va(zy) < valz) Vva(y).

2. Intuitionistic fuzzy subgroup generated by an intuition-

istic fuzzy set

Definition 2.1[8]. Let A be an IFS in a set X and let A, p € I with
A+ < 1. Then the set A = {re X : pa(z) > X and vg(z) < p} is
called a (A, pu)-level subset of A.

The following is the immediate result of Dedinition 2.1:

Proposition 2.2. Let A be an IFS in a set X and let (A, p1), (A2, it2) €
Im(A). If A; < Ay and 13 > pip, then AQ1#1) 5 AQzm2),

Definition 2.3[9]. Let G be a group and let A € IFS(G). Then A is
called an intuitionistic fuzzy subgroup ( in short, IFG) of G if it satisfies
the following conditions:

(i) A is an IFGP of G.

(i) palz™") > pa(z) and va(z™!) < va(z) for each z € G.
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We will denote the set of all IFGs of G as IFG(G).

Result 2.A[9, Proposition 2.6]. Let A be an IFG of a group G.
Then A(z™!) = A(z) and pa(x) < pa(e),va(z) > vale) for each z € G,
where e is the identity element of G.

Result 2.B[9, Proposition 2.18 and 2.19]. Let A be an IFSin a
group G. Then A is an IFG of G if and only if AX#) is a subgroup of
G for each (A, u) € Im(A).

Definition 2.4[8]. Let A be an IFG of a group G and let (A, ) € Im(A).
Then the subgroup A#) is called a (), p)-level subgroup of A.

Lemma 2.5. Let A be any IFS of a set X. Then
pa(@) = V{d:z e AOMY and va(o) = A{p: 2 € ADMY,
where z € X and \,p € I with A+ < 1.

Proof. Let a = V{} : 2 € AP} let 8 = Af{p: 2 € ABW)
and let € > 0 be arbitrary. Then o —e¢ < \{A : z € APM} and
B+e> A{u:z e AP}, Thus there exist A\, u € I with A+ p < 1 such
that z € AMM) @ —e¢ < Xand B+¢ > p. Since £ € APH | pu(x) > A
and va(z) < . Thus pa(z) > a— ¢ and v4(z) < §+c¢c. Sincee >0 is
arbitrary, pa(z) > a and va(z) < 5. We now show that pa(z) < o and
va{z) > (. Suppose pa(r) =t; and va(x) = t3. Then ¢ty +t2 < 1. Thus
ze Atut2) Soty e (A :z € APMY and t € {u: z € AMW}. Thus
t1 <V{d:ze AN} and ty > Af{p:z € APMY, e, pa(z) <« and
v4(x) > 8. This completes the proof.

‘We shall denote by (A) the IFG generated by the IFS A in G. We
shall use the same notation (A*#)) for the ordinary subgroup of the
group G generated by the level subset A(#),
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Theorem 2.6. Let G be a group and let A4 € IFS(G). Let A* € IFS(G)
be defined as follows: for each x € G,

pa-(z) = V{A 2z € (AM)} and va-(z) = Af{p: 2 € (AXH)},
where A, u € I with A+ u < 1. Then A is an IFG of G such that
A* =B € IFG(G) : A C B}. In this case, A* is called the intuition-
istic fuzzy subgroup generated by A in G and denoted by (A).

Proof. Let (t1,t) € Im(A*) and let & = t; — L and 8 = t2 + %,
where n is any sufficiently large positive integer. Let x € G. Suppose
z € A*®t2) Then pas(z) > t; and va-(z) < ta. Thus there exist
A€ I with A+ p < 1such that A > ao,p < Fand x € AXH) | Since
(a,8) < (Ahp) and a+ 8 < 1, AP ¢ A@A). So x € AP je,
z € (AlB))y.

Now suppose = € (A@A)). Then o € {A:z € (APM#))} and 3 €
{p:ze (AP} . Thus e < V{A:z € (AN} and 8> A{p:z €
(ABN} 8oty — & < pae(z) and &y + 1> va(2) e, t) < pas(x)
and ty > va-(z). Hence z € A*t1t2) je  (AlB)) C A*(tnt2) - Hence
Arnt2) — (Al@B)y Gince (A*P) is a subgroup of G, A*tut2) g g
subgroup of G. By Result 2.B, A" is an IFG of G.

Now, we show that A C A*. Let € . Then, by Lemma 2.5, p4(z) =
V{d:z e AMM} and va(z) = A{p:z € ACY Thus pa(z) < V{A:
z € (AP} and va(z) > Ap: x € (AXH)}. So A C A"

Finally, let B be any IFG of G such that A C B. We show that
A* C B. Let z € G and A*(z) = (t1,t3). Then A*(t1f2) = (Alef)y
where o = #] — %, 8=ty + %, and n is any sufficiently large positive
integer. Thus z € (A(a,ﬁ))‘ So z = a1a2 - - - am, where a; or ai"l belongs
to AlB (i =1,--- 'm).
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On the other hand,

upl{z) = pplaiaz---am)
= pplar) Appla) A Aug(am)
> palar) Apalaz) A A palam)
Z a=t;— 1
(s
and
vp(x) = vplaiaz---am)
< wvpla1) Vvg(az) V- Vp(an)
< vala) Vreala) V- - Vvalan)
1
< B=ti+-.
n

Since n is sufficiently large positive integer, ug(z) > ¢; and vg(x) < ts.
So A* C B. Hence A* =({B € IFG{(G) : A C B}. This completes the

proof.

It is possible that card Im(A*) be less than card Im(A). Moreover,
Im(A*) need not be contained in Im(A) as shown in the following ex-

amples.

Example 2.7. Let G = {e,a,b,ab} be the Klein four-group, where
a® = b2 = e and ab = ba. Define an IFS A of G by:

A(e) = (0.5,0.5), A(a) = (0.8,0.2), A(b) = (0.7,0.3) and A(ab) =
(0.6,0.4). Then A0802) = {4} AOTO03} — [ p} A0604) — (4 p b}
and A(0505) = . S0 (A0802)) = {e 4} and (A(®703)) = @. Moreover,
by definition, we have A*(e) = A*(a) = (0.8,0.2) and A*(b) = A*(ab) =
(0.7,0.3).

Now an attempt is made to obtain a necessary and sufficient condi-

tion for a p-group to be cyclic.
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Lemma 2.8. Let G be a finite group. Suppose there exists an IFG A
of G satisfying the following conditions: for any z,y € G,

(i) Alz) = Aly) = (z) = (y)-

(i) pa(z) > paly) and va(z) <valy) = (=) C (y).
Then G is cyclic.

Proof. Suppose A is constant on G. Then A(r) = A(y) for any z,y €
G. By the condition {i), (z) = (y). So G = (z). Now suppose A
is not constant on G. Let Im(A)={(to, s0), (t1,81), - , (tn, 5n)}, where
to >t > - >ty and sp < 51 < --- < 5,. Then, by Proposition 2.2
and Result 2.B, we obtain the chain of level subgroups of A:

A(EOySD) C A(tlysl) C.oC A(tﬂvsﬂ) — G

Let & € G— Altn-15n1) We show that G = (z). Let g € G — Altn-1:5n-1)
Since tg > t; > - > tp and sp < §1 < -+ < sp, Alg) = A(z) =
Altn-1:5n-1) By the condition (i), (g) = (). Thus G— Aln-1:52-1) ().
Now let ¢ € Altn-18n-1) Then palg) 2 the1 > th = pa(z) and

va(g) < spo1 < sp = va(x). By the condition (ii), (g) < (x). Thus

Altn-135n-1) = (z). So G = (z). Hence, in either case, G is cyclic.

Lemma 2.9. Let G be a cyclic group of order p", where p is prime.
Then there exists an IFG A of G satisfying the following conditions: for
any ¢,y € G,

(i) A(z) = Aly) = (=) = (y).
(i) malz) > paly) and va(z) < valy) = (z) C (y)-

Proof. Consider the following chain of subgroups of G:

(ey=GoCcGyC--CGr1CGr=0G,
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where G; is the subgroup of G generated by an element of order p*,
i=0,1,--- ,n and e is the identity of G. We define a complex mapping
A= (pa,va):G— IxI asfollows: for each z € G,

Ale) = (to, 50)
and

Alx) = (ti, ) ife € G;— Gy forany i = 1,2, -+, n,
where t;,s; € I such that t; + s, < 1,83 >t > - - > ¢, and s9 < 81 <
--+ < 85. Then we can easily check that A is an IFG of G satisfying the

conditions (i) and (ii).
From Lemma 2.8 and Lemma 2.9 we obtain the following:

Theorem 2.10. Let G be a group of order p". Then G is cyclic if and
only if there exists an IFG A of G such that for any 2,y € G,

(i) A(z) = Aly) = (z) = (y).

(ii) pa(z) > paly) and va(z) < valy) = (z) C ().

3. Intuitionistic fuzzy ideals and homomorphisms

Definition 3.1[9]. Let (R,+,-) be a ring and let 0., # A € IFS(R).
Then A is called an intuitionistic fuzzy subring ( in short, IFSR) in R
if it satisfies the following conditions:

(i) A is an IFG with respect to the operation ”+” (in the sense of
Definition 2.3),

(ii) A is an IFGP with respect to the operation ” -” {in the sense of
Definition 1.7 )

It is clear that subrings of R are IFSRs of R. We will denote the set
of all IFSRs of R as IFSR(R).
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Definition 3.2[9]. Let R be a ring and let 0.. # A € IFS(R). Then A
is called an intuitionistic fuzzy ideal (in short, I FI) of R if it satisfies the
following conditions:

(i) A is an IFSR of R.

(ii) pa(zy) = pa(z), va(zy) < valz) and palzy) 2 pa(y), valzy) <
valy) for any z,y € R.

We will denote the set of all IFIs of R as IFI(R). It is well-known
that if A, B € IFI(R), then AN B € IFI(R) (See Theorem 4.4 in (2]).

Result 3.A[9, Proposition 4.5]. Let R be a ring and let 0. # A €
IFS(R). Then A is an IFI of R if and only if for any r,y € R,

(i) palz —y) 2 palz) A paly) and va(z — y) < valz) vV valy),
(i) palzy) > pa(z) v paly) and va(zy) < va(z) Avaly).

It is clear that if A is an IFI of R, then A(—x) = A(z) < A(0) for
each z € R, where 0 is the identity in R with respect to” +7”.

Proposition 3.3. Let A be an IFS in a ring R. Then A € IFI(R) if
and only if AM#) is an ideal of R for each (X, u) € Im(A).

Proof. (=): Suppose A is an IFI of R. For each (A, ) € Im(A), let
z,y € AN, Then pa(z) 2 A, valz) < pand paly) 2 A, va(y) < p. By
Result 3.A (i), pa(z—y) > pa(z) Apaly) and valz —y) < valz)Vraly).
Thus pa(c —y) > Aand va(z —y) < p. Soz—y € AP Letz € R
and y € AN Then pa(y) > A and va(y) < p. Since A is an IFI of R,
by Result 3.A (ii), pa(zy) > palx) Apaly) and va(zy) < valz)Vrealy).
Thus pa(zy) = A and va(zy) < p. So xy € A4 Similarly, we have
yr € AX#) Hence A is an ideal of R.

(«<): Suppose the necessary condition holds. For any z,y € R, let
A(z) = (t1,5) and A(y) = (t2.82). Then clearly, x € Altis1) and
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y € Al232) Gince A1) jg an ideal of R, z — y € At151), Then

pa(z—y) >t 2 ti Ate = palz) A paly)
and

va(z —y) <81 < 81V s =v4(z) Vwaly).
Thus A satisfies the condition (i) of Result 3.A.

Now for each & € R, let A(z) = (\, x). Then clearly 2 € A4, Let
y € R. Since AM#) is an ideal of R, zy € AM#) and yz € AP#). Then

palry) = A= pa(z),valzy) < p=valz)
and
palyz) > X = ua(y),valyz) < p=rva(y).

Thus A satisfies the condition (ii) of Definition 3.2. Hence A is an IFI
of R.

Example 3.4. Let R denote the ring of real numbers under the usual
operations of addition and multiplication. We define a complex mapping
A= (pa,va): R— I x1I as follows : for each z € R,

(t,s) if z is rational,
Alz) =
(t',¢') if z is irrational,
where (t,5),(¢,s’) € IxIsuchthat t+s < 1,t/+s <landt >t s < s
Then we can see that A € IFSR(R) but A ¢ IFI(R).

Definition 3.5[2]. Let X and Y be sets, let f : X — Y be a mapping
and let A € IFS(X). Then A is said to be f-invariant if f(z) = f(y)
implies A(x) = A(y), i.e., pa(z) = paly) and va(z) = va(y).

Result 3.B[2,Proposition 6.6]. Let X and Y besets, let f: X — Y
a mapping and let A € IFS(X). If Ais f-invariant, then f~1(f{A)) =
A.
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Definition 3.6[8]. Let (X,-) be a groupoid and let A, B € IFS(X).
Then the intuitionistic fuzzy product of A and B, Ao B, is defined as
follows: for each xr € X,

Vigmexxtal) Aps(z)] if o =yz,

0 otherwise,

iacB(z) =

and

v Vg(z)] ifz=yz,
vaop(z) = Awnexxxlvaly)ves(z)] ifz=yz
1 otherwise.

Similarly, we have the following definition:

Definition 3.7. Let A and B be any two IFIs of a ring R. Then the
intuitionistic fuzzy sum of A and B, A+ B, is defined as follows: for any
T € R,

V(y,z)ERxR[uA(y) A ,UB(Z)] lf =y + 2,
0 ifx#y+ 2,

pa+B(T) =

and
A va(y) vus(z)] ife=y+z,
VA-}-B(-'L') - (y,z)ERXR
1 ifx#y+ 2.
Let f : R — R’ be a ring epimorphism. If A is an IFR [resp. IFI] of
R, then so is f(A); and B is an IFR [resp. IF]] of R’, then so is f~*(B)
(See Theorem 6.2 and Theorem 6.3 in [2]).

This section reflects the effect of a homomorphism on the sum, prod-

uct and intersection of any two IFIs of a ring.

Theorem 3.8. Let f : R — R’ be a ring epimorphism. If A and B are
IFIs of R, then

(1) f(A+ B) = f(A) + /(B).

(2) f(AoB) = f(A)o f(B).
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(3) f(AN B) C f(A) N f(B), with equality if at least one of A or B

is f-invariant.

Proof. (1) Let y € R’ and let ¢ > 0 be arbitrary. Let (a,¢/) =
f(A+ B)(y) and let (3, 8) = (f(A) + f(B))(y). Then:

a=prasm@) =\ nasn(2)
z€f 1 (y)

o =vyaem) = N\ vars(2)

z€ f~1{y)
and
B=urayrsm @ =V lupay(2) A s (@)
y=z+2'
B =vrayerm @ = N\ W) V()]
y=z+2'

Thus a — € < \/ ¢ jm10y Hatn(z) and o + € > Ao vars(2). So
there exist zg,zy € R with f(zg) = y and f(z5) = y such that o — € <
pars(zo) and o' + € > vayp(z;). By the definition of sum,

a—e <V, o plpal@)App®)and of ve > A,y lvald)Vupd))-
Then there exist ag, by € R with zg = ag + bg such that a—¢ < pa(ag) A
15(bo) and there exist af), b, € R with z{, = a, + b, such that o' 4 ¢ >
valag) V ve(bp).

On the other hand,

2

v

tra)(flao)) A sy (f(bo))
)(f(a0)) A Flus)(f(bo))

FUF(a)iao) A F7H(F(B)) (bo)
)

A g (bo).

flua

(
I

Y

palao
Similarly, we have

8" < wvalag) vV ve(by)-
So3>a-cand # < o + e Since € is arbitrary, 8 > o and 3’ < o',
Hence (f(A) + f(B))(y) > f(A+ B)(y) for each y € R". (%)
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Now we will show that 3 < o and 3 > o'. Clearly,

B-e< \/ lnsa)(2) Apssy(2)]
y=z+z'

and

Bre> N\ i) V).

y=z+2'
Then there exist z1, 2] € R’ with y = z; + 2{ such that
B—e<ppala)= \/ 1a(z),
z€f~1(z1)

B—e<upm(z)= \/ uB(x)
z€f~1(2])

and there exist zp, 25 € R’ with y = z5 + 2 such that

B+ e >vpa)(z) = /\ va(z),
z€f~(20)

B+e>vpp(z) = /\ vg(z).
xef1(z])

Thus there exist z1,2] € R with f(z1) = z1 and f(z}) = 2| such that
8 —e<palz1), 8- €< pp())

and there exist xg,z( € R with f(zo) = z0 and f(z}) = z such that

B+e>va(xg), B+ e > vp(xp).

So
B —e<palz) Appl(z)) < parslz) +x7)
<V rars(®) = pparmy)
€ fy)
and

B + e >va(zo) Vvplay) > vaigl(zo + 2p)

> /\ va+B(Z) = Viarp (Y).
ref-y)
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Hence 5 — ¢ < a and 3’ 4 ¢ > . Since ¢ > 0 is arbitrary, # < @ and
g8 >a.
So (f(A) + F(B))() < f(A + B)(y) for each y € R (s+)
Therefore, by (*) and (xx), f(A) + f(B) = f(A + B).

(2) Let y € R’ and let € > 0 be arbitrary. Let (o, 0’} = f(Ao B)(y)
and let (8, 8') = (f(A) o f(B))(y). Then

a=prap®)= V npaos(2),

ze€f " (y)

(+)

o =vipom@) =\ vaon(2)

z€f1(y)

and

B=ppaerm® =V I A pgs @),
Y=y
(%%)

B =viaprm®) = N )V ese )l
y=y132

In () @ — €<V, ep-1() HaoB(2) and & + € > Ao 1) Vaon(z). Thus
there exist z,2' € f~!(y) such that & — € < paop(z) and o + ¢ >
VAoB(&'). Since p1aop () = Vyogyq, la(@1) A pp(22)] and vaop(a’) =
Azr=zay [va(z)) V vp(25)], there exist 1, z9, 2], zh € R with ¢ = z1x9
and 2’ = ziz) such that a — ¢ < pa(z1) A pp(ze) and &' +¢€ >
va(z})vvp(zh). By Result 1.A(3), since A C f71(f(A)), pa < pp-1(5(a))
and vg > Vi-1(f(A))- On the other hand, HE-1(f(A)) = f“l(,uf(A)) =
FN(f(ra)) and vi-rgpay) = F (vpa)) = £71(F(va)). Thus

a—€ < [T upa) @) A F (g (@2)
pray(f(@)) Apgs (flz2))

V s () A ppes) (v)]
Yy=Y1y2

Br s (y) =B

I

(A

i
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and

o +e > Flvpa)@) VI vm)(eh)
vray(F (1)) V vem)(fl=3))

AN
¥=ny2

v

Vi) (v =8

Since € > 0 is arbitrary, @ < 8 and o/ > #.
In (%),

B—e < N gy @) Apse ()

Y=y1y2
= A [( \/ alz1)) A( \/ ﬂB(Z2))]
y=1nyz zef-l(ym) 2€f~Hy2)

and

B+e > N vl vegm ()

y=mya
= AN A va)v( A val2)
y=ny2 zef () z2€f 1 (y2)

Thus there exist y;,y2 € R’ with y = y,y3 such that
B-e < () pale)n( us(z)
znef ) 22€f~Hy2)

- V V  [a(z1) A pp(ze)]

21€f 7 H(y1) 2€F~ 1 (y2)

and

Bte > (N wvaz)v( A ve(z)

z21€f7 () 22€f 7 Hy2)

— A N [valz) vus(z).

2€f~Yy1) 2€fyz)

So there exist z; € f~1(y1) and x2 € £ (y2) such that

B €< pa(zi) App(zz) and 8’ + e > valzy) V vg(z).
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Let z = z17z2. Since f is a ring homomorphism, ¥ = y1y2 = f(z122) =
f(x). Thus

palz) App(e) < \/ [palz) A ps(z)]

T=T1T2
= paon(@) <\  pacs(z)
zef~1(y)

= Ua0B)(¥) = @

and

valz)) Vuglzs) > /\ [va(z1) V vp(z2)]

T=I1T2
= vaeB(z)> N vaos(x)
zef 1 (y)

= Vpuomly) = o

SofB—e< aand ' +¢ > a'. Since e > 01is arbitrary, 8 <o and 3 > o'
Hence {a, 3) = (¢/, 3'). This completes the proof.

(3) Clearly, ANB C Aand ANB C B. By Result 1.A (1) ,f(ANB) C
f(A) and f(ANB) C f(B). So f(ANB) C f(A)n f(B). Suppose B is
f-invariant. By Result 3.B, f~!(f(B)) = B. Let y € R’ and let ¢ > 0 be
arbitrary. Let (a, 8) = [f(A)N f(B)](y) and let (¢, 8) = [f(AN B)}}(y).
Then

o = prayngs) (¥ = ( V 1a(@)) A ey sy (y)
zef~Hy)
and
B =vianss)(y) = ( /\ va(z)) vV vyp(y)
zef~(y)
Thus a—€ < (Ve p-1¢ Bal@e) Mg (y) and Be > (Apep1(,y valz)V
v5B)(y). So there exists an z € f1(y) such that o —e < pa(z), a—€ <
by (y) and B+ ¢ > va(z), B+ € > vyp)(y). Since B is f-invariant, by
Result 3.B, f~1(f(B)) = B. Then

1) = ppemy (F@) = F g (@) = pp-1pmp(z) = ps(z)
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and

vy () = vy (F(@) = [ (vem) (&) = vp-1(5(m))(2) = valz).

Thus
@ —¢€ < pa(z),a —e < pp(x)
and
B+e>va(z),8+€>vp(z).
So
a—e< pa(z) A ppl(r) = pans(z)
and
B+e€>valx)Vvp(z) =vangp(z).
Hence
a—e< V 1anB(T) = ppang)(y) = o
zef~1(y)
and

Bre> N vansx)=vianp@) =5
zef~Hy)
Since € > 0 is arbitrary, « < o and 8 > §'. Thus f(A) N f(B) C
f(AN B). Therefore f(A)N f(B) = f(AnN B).

4. Intuitionistic fuzzy cosets

Definition 4.1. Let A be any IFI of a ring R and let z € R. Then
Az €IFS(R) is called the intuitionistic fuzzy coset determined by x and
Aif Ay(r) = A(r — x) for each r € R.

Proposition 4.2. Let A be any IFI of a ring R and let R/A the set of
all intuitionistic fuzzy cosets of A in R. Then R/A is a ring under the
following operations:

Az + Ay = Agyy and Az Ay = Ay for any o,y € R.
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Proof. For any a,b,¢c,d € R, suppose A, = Ay and A, = Ay. Then

(1) A(r—a)=A(r—b) foreachr € R
‘and
(2) A(r—cy=A(r—d) foreachr € R

Letr=a+c—din(1),r=cin (2) and r = ain (1). Then

(3) Ala+c—d—a)=Ala+c—d—b) = A(c—d),
(4) Alc—c¢) = A(c—d) = A(0)

and

(5) Aa —a) = A(a — b) = A(0).

On the other hand,

BAat+ac(T) = Ba(r)=palr—a—c)

pallr —b—d) — (a+c— b d)

> palr—b—d)Apala+c—b—d)
= pa(r—b—d) A pa(0) (By (3) and (4))
= pa(r—5b-4d)
= 4, ,(r) = pa,+a,(r)

and

VAu+a (1) = va,. (r)=valr—a—c)

= vallr—b-d)~(a+c—b-d)
< va(lr—b—d)Vvala+c—b—4d)

va(r —b—d) Vva(0) (By (3) and (4))
valr — b—d)

= ‘UAb+d(T) = VAb""Ad(T)'

35
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Thus Ay + Ag C Ag + A.. By the similar arguments, we have
Ag + Ac C Ap + Ag.
So A, + A. = Ay + Ag. Hence addition is well-defined. Also,

LaA(r) = pag(r)=palr —ac)
pal(r — bd) — (ac ~ bd)]

11

> pa(r — bd) A palac — bd)

= pa(r—bd) Apa((a - blc—b(d —c))

> pa(r - bd) Apala —b)pald—c)

= pal(r - bd) A pa(0)pa(0) (By (4) and (5))
= palr —bd)

= HAy (T) = HALAq (7‘)

and

VA (1) =Va,.(r) = valr — ac)
=va[(r — bd) — (ac — bd)]
<wva(r — bd) V va(ac — bd)
=va(r —bd) Vva((a— blc—bld—c))
<valr—bd) Viagle — biva(d—¢)
—va(r — bd) V va(0)4(0) (By (4) and (5))
=v4(r — bd)
=va,,(r) = va,a,(r).
Thus ApAg C A, A.. By the similar arguments, we have A; A, C ApAq.
So ApAg = AqAc. Hence multiplication is well-defined. Clearly, Ao(= A)
acts as the additive identity, A, as the multiplicative identity (where e

is the multiplicative identity of R) and A_, as additive inverse of A;.

It is now a purely routine matter to verify the other properties. This
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completes the proof.

Lemma 4.3. Let A be an IFSR or an IFI of a ring R. If there

exist x,y € R such that pa(z) < pa(y) and va(z) > va(y), then
Alz -y) = Alz) = Aly ~ 7).

Proof. Since A is an IFG of R with respect to 7 4+ ", by Result 2.A,
A(z—y) = A(y — z). Thus it is sufficient to show that Az —y} = A(z).
Since pa(z} < pa(y), valz) > va(y) and A is an IFSR or an IFI of R,
pa(® —y) 2 paz) Apaly) = pale) and va(z —y) < valz) vV valy) =
va(x). On the other hand, pa(z) = pa(z — y+y) 2 palz — y) Apa(y)
and va(z) = va(z—y+y) <valz—y) Vraly). Thus pa(z) > palz—y)
and v4(z) <wva(z —y). So A(z — y) = A(z). This completes the proof.

Lemma 4.4. If A is any IFI of a ring R, then A(z) = A{0) if and only
if A; = Ap, where z € R.

Proof. (=): Suppose A(z) = A(0). Since A is an IFG of R with
respect to 7 + 7, A(r) < A(0) = A(r), Le., pa(r) < pa(0) = pa(r) and
valr) 2 v4(0) = va(r) for each r € R.

Case(i): Suppose A{r) < A(z). Then, by Lemma 4.3 A(r—z) = A(r).
Thus Ax(r) = Ap(r) for each + € R.

Case(ii): Suppose A(r) = A(z). Then z,7 € AXH) where (A, pu) =
A{0). Since A is an IFG of R, A®#) is a subgroup of R. Thus z — r €
A Thus pa(z —7) > A = pa(0) and va(z — r) < u = va(0).
Since pa(x —r) < pa(0) and va(z — 1) 2 va(0), palz —r) = pa(0)
and vy(z — r) = va(0). Thus A(z — r) = A0} = A(z) = A(r), ie.,
Az(r) = Ap(r) for each r € R. In either case, A;(r) = Aq(r) for each
r € R. Hence A, = Ag for each z € R.

(«): It is straightforward.



38 Kul Hur, Su Youn Jang and Hee Won Kang

Theorem 4.5. Let A be any IFI of a ring R and let A(0) = (A, p).
Then R/AM) = R/A.

Proof. Define a mapping f : R — R/A by f(z) = A; for each z € R.
Then it is easy to check that f is a ring epimorphism. By Lemma 4.4,

Kerf={z € R: f(z) = Ao} = {zr € R: Az = Ao}

={z € R: A(z) = A(0)} = A,
Hence R/AM#) = R/A.

Theorem 4.6. Let f : R — R’ be a ring epimorphism and let A be
an IFI of R such that A#) C Kerf, where (), 1) = A(0). Then there
exists a unique epimorphism f : R/A — R’ such that f = f o g, where
g(x) = A, for each 2 € R.

Proof. Define a mapping f : R4 — R’ by f(A;) = f(z) for each z € R.
Suppose Ay = Ay. Then A;_y = Ay = A, = A,. By Lemma 44,
A(z —y) = A(0). Then z —y € AM¥, Since AM C Kerf, r—y €
Kerf. Thus f(z) = f(y), i.e, f(Az) = f(Ay). So f is well-defined.
Furthermore, since f is surjective, f is also surjective. Moreover, it is
easy to see that f is a homomorphism.
Consider the following diagram:
R L R
e N SF
R/A
Let z € R. Then f(z) = f(A:) = f(g(z)) = (f o g)(z). Thus the
above diagram commutes, i.e., f = fog.
Suppose there exists an epimorphism h : R/A — R’ such that f =
hog. Let z € R. Then f(A;) = f(z) = (hog)(z) = h(g(z)) = h(Az).
Thus f = k. So f is unique. This completes the proof.
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Corollary 4.6. The induced homomorphism f is an isomorphism if
and only if A is f-invariant.
Proof. (=): Suppose f is an isomorphism, i.e., f is injective. For any
x,y € R, let f(z) = f(y). Then f(A;) = f(A,). Since f is injective,
Ay = A, Thus A;_, = Ap. By Lemma 44, A(r —y) = A(0). By
Proposition 2.8 in [9] A(z) = A(y). So A is f-invariant.

(«<): Suppose A is f-invariant and f(A4;) = f(A,). Then f(z) =
f(0). Since A is f-invariant, A(x) = A(0). By Lemma 4.4, A; = 4¢. So

f is injective. This completes the proof.

Theorem 4.7. Let f : R — R’ be a ring epimorphism and let A be any
f-invariant IFI of R. Then R/A = R'/f(A).

Proof. Since A is f-invariant, Kerf ¢ AP where (\, u) = A(0).
Consider f(A)(0') = (f(pa)(0), f(va)(0))}, where 0' denotes the addi-
tive identity in R’. Then

flud@) =\ pa(@)and fua)@) = A valz).
zef~1(0) zef-1(0)

Since f(0) = 0/ and A(x)} < A(0), i.e., pa(zx) < pa(0), va(z) > va(0) for
each z € R, f(1a)(0") = pa(0) and f(va)(0) = va(0), ie., f(A)(O) =
A(0) = (A, u). Now,

flz) € [fA)#

palz) > A and va(z) < p (by Result3.B)
ze AM

& f(x) e f(A(’\’”}) (Since Kerf C A(’\'”)).

t ¢ ¢ ¢
k.s
L
3

So [f(A)]MH = f(AM#)). By Theorem 4.5, R/A = R/APM#) and
R'Jf(A) = R'/[f(A)]*#). Hence R/A = R'/f(A). This completes the

proof.
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