EXPONENTIAL FORMULA FOR C REGULARIZED SEMIGROUPS

YOUNG S. LEE

Abstract. In this paper, we show that C-resolvent of generator can be represented by Laplace transform and establish an exponential formula for C regularized semigroups whose antiderivatives are exponentially bounded.

1. Introduction

Let X be a Banach space. Consider the following abstract Cauchy problem

(ACP)
$$\frac{du}{dt} = Au, \quad u(0) = x,$$

where A is a linear operator in X.

Let A be the generator of a C_0 semigroup $\{T(t): t \geq 0\}$ on X. Then the solution of (ACP) is given by u(t) = T(t)x for all $x \in X$ and the C_0 semigroup T(t) is given by the exponential formula $T(t)x = \lim_{n\to\infty} (I - tA/n)^{-n}x$ for all $x \in X$. Moreover, $u_n(t) = (I - tA/n)^{-n}x$ is the solution of an implicit difference approximation of (ACP) and is an approximation of the solution of (ACP) (see [4, 5]). To establish the exponential formula, the operator A must be a generator of a C_0 semigroup, in particular, A is densely defined and has nonempty resolvent set. But C_0 semigroup theory is not always sufficient for the application

Received August 5,2004; Accepted September 30,2004.

²⁰⁰⁰ Mathematics Subject Classification: 47D05.

Key words and phrases: C-regularized semigroup, Generator, C-resolvent, Laplace transform, Exponential formula.

to (ACP) and so several generalizations of C_0 semigroup have been introduced and developed, e.g., existence families and C regularized semigroup, etc (see [3, 4]). In particular, operators with empty resolvent set occur in Petrovskii correct system of partial differential equation and the C regularized semigroup theory is useful to treat systems of this type.

In this paper, we establish the exponential formula for C regularized semigroup, which may not be exponentially bounded. In the case of exponentially bounded C regularized semigroup, the exponential formula can be established by using C_0 semigroup on a Hille-Yosida space for the generator A. In the next section, we give a direct proof of the exponential formula for C regularized semigroup whose antiderivative is exponentially bounded.

Throughout this paper, X is always a Banach space, B(X) is the space of all bounded linear operators on X, C is a bounded linear injective operator on X and M, ω are constants. For an operator A, D(A) and R(A) are the domain and range of A, respectively.

2. C regularized semigroups and exponential formula

First, we recall the definition and basic properties of C regularized semigroup. For more information, see [3].

Definition 1. The strong continuous family $\{S(t): t \geq 0\}$ of B(X) is a C-regularized semigroup if S(0) = C and S(t)S(s) = CS(t+s) for all $s, t \geq 0$.

An operator A is called the generator of $\{S(t): t \geq 0\}$ if

$$Ax = C^{-1} \left(\lim_{h \to 0} \frac{1}{h} (S(h)x - Cx) \right)$$

with the maximal domain D(A).

The complex number λ is in $\rho_C(A)$, the C-resolvent set of A, if $\lambda - A$ is injective and $R(C) \subset R(\lambda - A)$.

Lemma 2. Let A be the generator of a C-regularized semigroup $\{S(t): t \geq 0\}$. Then

- (1) A is closed and $R(C) \subset \overline{D(A)}$
- (2) if $f:[0,\infty)\to X$ is continuously differentiable, then $\int_0^t S(s)f(s)ds$ $\in D(A)$ and

$$A\left(\int_0^t S(s)f(s)ds\right) = S(t)f(t) - Cf(0) - \int_0^t S(s)f'(s)ds.$$

By Lemma 2, we know u(t) = S(t)x is a mild solution of (ACP) with u(0) = Cx for all $x \in X$, that is,

$$A\left(\int_0^t S(s)xds\right) = S(t)x - Cx$$

for all $x \in X$ and $t \ge 0$.

Theorem 3. Let A be the generator of a C-regularized semigroup $\{S(t): t \geq 0\}$ satisfying $||\int_0^t S(s)ds|| \leq Me^{\omega t}$ for all $t \geq 0$. Then

- (1) $(\omega, \infty) \subset \rho_C(A)$
- (2) $S(t)x \in R(\lambda A)$ and $(\lambda A)^{-1}S(t)x = \int_0^\infty e^{-\lambda s}S(t+s)xds$ for all $x \in X$ and $\lambda > \omega$.
- (3) $R(C) \subset R((\lambda A)^n)$ and

$$(\lambda - A)^{-n}Cx = \frac{1}{(n-1)!} \int_0^\infty e^{-\lambda t} t^{n-1} S(t) x dt$$

for all $n \in N$, $\lambda > \omega$ and $x \in X$.

Proof. Let $x \in X$ and let $\lambda > \omega$. By Lemma 2 and integration by part. we have

$$A(\int_0^\infty e^{-\lambda t} S(t) x dt) = \lambda \int_0^\infty e^{-\lambda t} A(\int_0^t S(s) x ds) dt$$
$$= \lambda \int_0^\infty e^{-\lambda t} S(t) x dt - Cx.$$

Thus we have $(\lambda - A) \int_0^\infty e^{-\lambda t} S(t) x dt = Cx$. Since C is injective, $\lambda \in \rho_C(A)$ and $(\lambda - A)^{-1} Cx = \int_0^\infty e^{-\lambda t} S(t) x dt$.

Note that

$$\int_0^\infty e^{-\lambda s} S(t+s) x ds = e^{\lambda t} \int_t^\infty e^{-\lambda s} S(s) x ds$$
$$= e^{\lambda t} (\lambda - A)^{-1} C x - e^{\lambda t} \int_0^t e^{-\lambda s} S(s) x ds \in D(A).$$

By Lemma 2,

$$A\left(\int_0^t e^{-\lambda s}S(s)xds\right) = e^{-\lambda t}S(t)x - Cx + \lambda \int_0^t e^{-\lambda s}S(s)xds$$

and we have

$$A \int_0^\infty e^{-\lambda s} S(t+s) x ds$$

$$= e^{\lambda t} A(\lambda - A)^{-1} Cx - e^{\lambda t} A \int_0^t e^{-\lambda s} S(s) x ds$$

$$= e^{\lambda t} (\lambda(\lambda - A)^{-1} Cx - Cx)$$

$$-e^{\lambda t} (e^{-\lambda t} S(t) x - Cx + \lambda \int_0^t e^{-\lambda s} S(s) x ds)$$

$$= \lambda e^{\lambda t} \int_t^\infty e^{-\lambda s} S(s) x ds - S(t) x.$$

Therefore, we have

$$(\lambda - A) \int_0^\infty e^{-\lambda s} S(t+s) x ds = S(t) x$$

and (2) follows.

To prove (3), we use induction. Assume that

$$(\lambda - A)^{-k}Cx = \frac{1}{(k-1)!} \int_0^\infty e^{-\lambda t} t^{k-1} S(t) x dt.$$

By closedness of $(\lambda - A)^{-1}$ and Fubini's theorem

$$\begin{split} (\lambda - A)^{-(k+1)}Cx &= \frac{1}{(k-1)!}(\lambda - A)^{-1} \int_0^\infty e^{-\lambda t} t^{k-1} S(t) x dt \\ &= \frac{1}{(k-1)!} \int_0^\infty e^{-\lambda t} t^{k-1} \int_0^\infty e^{-\lambda s} S(t+s) x ds dt \\ &= \frac{1}{(k-1)!} \int_0^\infty t^{k-1} \int_t^\infty e^{-\lambda u} S(u) x du dt \\ &= \frac{1}{(k-1)!} \int_0^\infty \int_0^u t^{k-1} e^{-\lambda u} S(u) x dt du \\ &= \frac{1}{k!} \int_0^\infty e^{-\lambda u} u^k S(u) x du. \end{split}$$

By Theorem 3, we know that $(\lambda - A)^{-1}Cx$ is the Laplace transform of S(t)x, and so we have

$$\frac{d^n}{d\lambda^n}(\lambda - A)^{-1}Cx = (-1)^n \int_0^\infty e^{-\lambda t} t^n S(t) x dt.$$

Thus we have

$$(\lambda - A)^{-(n+1)}Cx = (-1)^n \frac{1}{n!} \frac{d^n}{d\lambda^n} (\lambda - A)^{-1}Cx.$$

By the Post-Widder inversion theorem

$$S(t)x = \lim_{n \to \infty} (-1)^n \frac{1}{n!} \left(\frac{n}{t}\right)^{n+1} \frac{d^n}{d\lambda^n} (\lambda - A)^{-1} Cx \Big|_{\lambda = n/t}$$
$$= \lim_{n \to \infty} (I - \frac{t}{n}A)^{-(n+1)} Cx$$

for $x \in X$. In the C_0 semigroup theory (C = I), n/t is in the resolvent set of A and $\lim_{n\to\infty} n/t(n/t-A)^{-1}x = x$. So we have the exponential formula for C_0 semigroup. Since the resolvent set of the generator of C regularized semigroup may be empty, this argument is not valid.

Let A is the generator of bounded strongly uniformly continuous C regularized semigroup. In [3], deLaubenfels have introduced Hille-Yosida space Z_0 for A and showed that $A|_{Z_0}$ is the generator of the contraction C_0 semigroup $\{T(t): t \geq 0\}$ on Z_0 and S(t)x = T(t)Cx for all $x \in X$. This argument can be extended to exponentially bounded C regularized semigroup. So we can establish the exponential formula for C regularized

semigroups which are exponentially bounded by using C_0 semigroup on a Hille-Yosida space for A.

Next, we present exponential formula for C regularized semigroup whose antiderivative is exponentially bounded. Our result includes the exponential formula for exponentially bounded C regularized semigroup. We give a direct proof of our exponential formula without using a Hille-Yosida space and its proof is a modification of that of Post-Widder inversion theorem in [1].

Theorem 4. Let A be the generator of C regularized semigroup $\{S(t): t \geq 0\}$ satisfying $||\int_0^t S(s)ds|| \leq Me^{\omega t}$ for all $t \geq 0$. Then

$$\lim_{n \to \infty} \left(I - \frac{t}{n} A \right)^{-n} Cx = S(t)x$$

for all $x \in X$.

Proof. By Theorem 3 and integration by part we have

$$\lambda^{n}(\lambda - A)^{-n}Cx - S(t)x$$

$$= \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} e^{-\lambda s} s^{n-1}S(s)xds - S(t)x$$

$$= \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} e^{-\lambda s} s^{n-1}(S(s)x - S(t)x)ds$$

$$= \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} (\lambda s - (n-1))e^{-\lambda s} s^{n-2} \int_{t}^{s} (S(r)x - S(t)x)drds$$

$$= \frac{\lambda^{n}}{(n-1)!} \int_{0}^{\infty} (\lambda s - (n-1))e^{-\lambda s} s^{n-2}F(s)ds,$$

where $F(s) = \int_t^s (S(r)x - S(t)x) dr$.

Let t > 0 and let $\lambda = n/t$. By change of variable, we have

$$\left(I - \frac{n}{t}A\right)^{-n} Cx - S(t)x
= \frac{n^n}{(n-1)!} \frac{1}{t} \int_0^\infty (n(u-1) + 1)e^{-nu} u^{n-2} F(tu) du.$$

Let $\varepsilon > 0$ be given. Since S(t)x is continuous in $t \geq 0$, there exists $0 < \delta < 1$ such that $|u - 1| < \delta$ implies

$$||F(tu)|| \le \int_t^{tu} ||S(r)x - S(t)x|| dr \le t|u - 1|\varepsilon.$$

By the exponential boundedness of the antiderivative of S(t), there exists a constant M_1 such that $||F(s)|| \leq M_1 e^{\omega s}$.

Therefore,

$$|| \left(I - \frac{n}{t} A \right)^{-n} Cx - S(t)x||$$

$$\leq \frac{n^n}{(n-1)!} \frac{1}{t} \int_0^\infty |n(u-1) + 1|e^{-nu}u^{n-2}|| F(tu)|| du$$

$$= \frac{n^n}{(n-1)!} \frac{1}{t} \int_0^{1-\delta} |n(u-1) + 1|e^{-nu}u^{n-2}|| F(tu)|| du$$

$$+ \frac{n^n}{(n-1)!} \frac{1}{t} \int_{1-\delta}^{1+\delta} |n(u-1) + 1|e^{-nu}u^{n-2}|| F(tu)|| du$$

$$+ \frac{n^n}{(n-1)!} \frac{1}{t} \int_{1+\delta}^\infty |n(u-1) + 1|e^{-nu}u^{n-2}|| F(tu)|| du$$

$$:= I_1 + I_2 + I_3.$$

Since $u < 1 - \delta < 1$ and n(u - 1) + 1 < 0 for $n > 1/\delta$, we have

$$I_{1} \leq \frac{n^{n}}{(n-1)!} \frac{1}{t} \int_{0}^{1-\delta} (n-nu-1)e^{-nu}u^{n-2}M_{1}e^{\omega tu}du$$

$$\leq \frac{n^{n}}{(n-1)!} \frac{M_{1}e^{\omega t}}{t} \int_{0}^{1-\delta} ((n-1)u^{n-2}-nu^{n-1})e^{-nu}du$$

$$= \frac{M_{1}e^{\omega t}}{t} \frac{n^{n}}{(n-1)!} \left((n-1) \int_{0}^{1-\delta} u^{n-2}e^{-nu}du - \int_{0}^{1-\delta} nu^{n-1}e^{-nu}du \right)$$

$$= \frac{M_{1}e^{\omega t}}{t} \frac{n^{n}}{(n-1)!} \left((n-1) \int_{0}^{1-\delta} u^{n-2}e^{-nu}du + \left[e^{-nu}u^{n-1} \right]_{0}^{1-\delta} - (n-1) \int_{0}^{1-\delta} u^{n-2}e^{-nu}du \right)$$

$$= \frac{M_{1}e^{\omega t}}{t} \frac{n^{n}}{(n-1)!} e^{-n(1-\delta)} (1-\delta)^{n-1}.$$

Let
$$a_n = (M_1 e^{\omega t}/t)(n^n/(n-1)!)e^{-n(1-\delta)}(1-\delta)^{n-1}$$
. Then $\lim_{n\to\infty} a_{n+1}/a_n = \lim_{n\to\infty} (1+1/n)^n e^{-(1-\delta)}(1-\delta) = e^{\delta}(1-\delta) < 1$. Thus $\lim_{n\to\infty} a_n = 0$.
Since $||F(tu)|| \le t|u-1|\varepsilon$ for $|u-1| < \delta$ and $|u-1| < \delta < 1$,

$$I_{2} \leq \frac{n^{n}}{(n-1)!} \int_{1-\delta}^{1+\delta} |n(u-1)+1|e^{-nu}u^{n-2}|u-1|du\varepsilon$$

$$\leq \frac{n^{n}}{(n-1)!} \left(\int_{1-\delta}^{1+\delta} n(u-1)^{2}e^{-nu}u^{n-2}du + \int_{1-\delta}^{1+\delta} e^{-nu}u^{n-2}|u-1|du \right) \varepsilon$$

$$\leq \frac{n^{n}}{(n-1)!} \left(\int_{1-\delta}^{1+\delta} (n(u-1)^{2}+1)e^{-nu}u^{n-2}du \right) \varepsilon$$

$$\leq \frac{n^{n}}{(n-1)!} \left(\int_{0}^{\infty} (nu^{n}-2nu^{n-1}+(n+1)u^{n-2})e^{-nu}du \right) \varepsilon$$

$$= \frac{n^{n}}{(n-1)!} \left(n\frac{n!}{n^{n+1}} - 2n\frac{(n-1)!}{n^{n}} + (n+1)\frac{(n-2)!}{n^{n-1}} \right) \varepsilon$$

$$= \frac{2n}{n-1} \varepsilon$$

Note that $e^{-mu}u^m$ is decreasing on $u > 1 + \delta$ for all m. Choose $n_0 > \omega t$. Since n(u-1) + 1 > 0 for $u > 1 + \delta$, for all $n > n_0$ we have

$$I_{3} \leq \frac{n^{n}}{(n-1)!} \frac{1}{t} \int_{1+\delta}^{\infty} |n(u-1)+1| e^{-nu} u^{n-2} M_{1} e^{\omega t u} du$$

$$= \frac{n^{n+1}}{(n-1)!} \frac{M_{1}}{t} \int_{1+\delta}^{\infty} (u-1) e^{-nu} u^{n-2} e^{\omega t u} du$$

$$+ \frac{n^{n}}{(n-1)!} \frac{M_{1}}{t} \int_{1+\delta}^{\infty} e^{-nu} u^{n-2} e^{\omega t u} du$$

$$= \frac{n^{n+1}}{(n-1)!} \frac{M_{1}}{t} \int_{1+\delta}^{\infty} (u-1) u^{n-n_{0}} e^{-(n-n_{0})u} e^{-n_{0}u} u^{n_{0}-2} e^{\omega t u} du$$

$$+ \frac{n^{n}}{(n-1)!} \frac{M_{1}}{t} \int_{1+\delta}^{\infty} u^{n-n_{0}} e^{-(n-n_{0})u} e^{-n_{0}u} u^{n_{0}-2} e^{\omega t u} du$$

$$\leq \frac{n^{n+1}}{(n-1)!} \frac{M_{1}}{t} e^{-(n-n_{0})(1+\delta)} (1+\delta)^{n-n_{0}} \int_{1+\delta}^{\infty} (u-1) e^{-n_{0}u} u^{n_{0}-2} e^{\omega t u} du$$

$$+ \frac{n^{n}}{(n-1)!} \frac{M_{1}}{t} e^{-(n-n_{0})(1+\delta)} (1+\delta)^{n-n_{0}} \int_{1+\delta}^{\infty} e^{-n_{0}u} u^{n_{0}-2} e^{\omega t u} du.$$

Let b_n and c_n be the first and second term in the last equation. Then

$$\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+2} e^{-(1+\delta)} (1+\delta) = e^{-\delta} (1+\delta) < 1$$

$$\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} e^{-(1+\delta)} (1+\delta) = e^{-\delta} (1+\delta) < 1.$$

So $\lim_{n\to\infty} b_n = 0$ and $\lim_{n\to\infty} c_n = 0$.

Therefore we have

$$\lim_{n \to \infty} || \left(I - \frac{t}{n} A \right)^{-n} Cx - S(t)x|| \le 2\varepsilon.$$

Since ε is arbitrary, the result follows.

References

- W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics 96, Birkhauser Verlag, Vasel, 2001
- [2] R. deLaubenfels, Existence and uniqueness families for the abstract Cauchy problem, J. London Math. Soc., 44(1991), 310 - 338
- [3] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Math., 1570, Berlin, Springer-Verlag 1994
- [4] K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, Berlin, 2000
- [5] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983

Young S. Lee
Department of Mathematics
Seoul Women's University
Seoul, 139-774 Korea
E-Mail: younglee@swu.ac.kr