Honam Mathematical J. 26(2004), No. 4, pp. 401-409

EXPONENTIAL FORMULA FOR C REGULARIZED
SEMIGROUPS

YOUNG S. LEE

Abstract. In this paper, we show that C-resolvent of generator
can be represented by Laplace transform and establish an exponen-
tial formula for C regularized semigroups whose antiderivatives are

exponentially bounded.

1. Introduction

Let X be a Banach space. Consider the following abstract Cauchy

problem
(ACP) — = Au, u(0)=rz,

where A is a linear operator in X.

Let A be the generator of a Cy semigroup {7'(t) : ¢t > 0} on X.
Then the solution of (ACP) is given by u(t) = T'(t)x for all x € X
and the Cp semigroup T'(¢) is given by the exponential formula T(t)x =
limy, . oo(I —tA/n) "z for all z € X. Moreover, un(t) = (I —tA/n) "z
is the solution of an implicit difference approximation of (ACP) and is
an approximation of the solution of (ACP) (see [4, 5]). To establish the
exponential formula, the operator A must be a generator of a Cy semi-
group, in particular, A is densely defined and has nonempty resolvent

set. But C semigroup theory is not always sufficient for the application
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to (ACP) and so several generalizations of Cyy semigroup have been in-
troduced and developed, e.g., existence families and C regularized semi-
group, etc (see [3, 4]). In particular, operators with empty resolvent set
occur in Petrovskii correct system of partial differential equation and the

C regularized semigroup theory is useful to treat systems of this type.

In this paper, we establish the exponential formula for C regularized
semigroup, which may not be exponentially bounded. In the case of ex-
ponentially bounded C regularized semigroup, the exponential formula
can be established by using Cy semigroup on a Hille-Yosida space for
the generator A. In the next section, we give a direct proof of the ex-
ponential formula for C regularized semigroup whose antiderivative is
exponentially bounded.

Throughout this paper, X is always a Banach space, B(X) is the
space of all bounded linear operators on X, C is a bounded linear injec-
tive operator on X and M, w are constants. For an operator A, D(A)

and R(A) are the domain and range of A, respectively.
2. C regularized semigroups and exponential formula

First, we recall the definition and basic properties of C regularized

semigroup. For more information, see [3].

Definition 1. The strong continuous family {S(¢) : t > 0} of B(X) is
a C-regularized semigroup if S(0) = C and S(t)S(s) = CS(t + s) for all
s, t>0.

An operator A is called the generator of {S(t) : ¢t > 0} if

Ar=C! <lim i(S(h);r - Cl‘))

h--0 h

with the maximal domain D{A).
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The complex number A is in po(A), the C-resolvent set of A, if A— A
is injective and R(C) C R(A — A).

Lemma 2. Let A be the generator of a C-regularized semigroup {S(t) :
t > 0}. Then
(1) Ais closed and R(C) C D(A)
(2) if f : [0, c0) — X is continuously différentiable, then fot S(s)f(s)ds
€ D(A) and

A (/Ot S(S)f(S)dS) = S(t)f(t) - Cf(0) - /Ot S(s)f'(s)ds.

By Lemma 2, we know u(t) = S(t)z is a mild solution of (ACP) with
u(0) = Cz for all x € X, that is,

A ( /0 t S(s)xds) = S(t)z - Cx

forallz €¢ X and t > 0.

Theorem 3. Let A be the generator of a C-regularized semigroup
{S(t) : t > 0} satistying || [o S(s)ds|| < Me®! for all t > 0. Then

(1) (w, o) C pc(A)

(2) S(t)z € R(A— A) and (A — A)71S(t)x = [° e 5 S(t + s)zds for

all z € X and A > w.
(3) R(C) C R({(A— A)"™) and
1 > —Atyn—1

T /0 e TS (t)xdt

foralme N, A >wand z € X.

(A-A)"Cx =

Proof. Let £ € X and let A > w. By Lemma 2 and integration by part.

we have

A(/Ox e MS()rdt) = A /:c e—/\tA( /Oﬁ S(s)rds)dt

I

A/" e MS(t)xdt — Cu.
J0
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Thus we have (A — A) [[* e *S(t)zdt = Cxz. Since C is injective, A €
pc(A) and (A — A)~1Cx = [° e MS(t)zdt.
Note that

/ e MS(t + s)xds = e’\t/ e~ S(s)xds
0 ¢

t
= M- A) 10z - / ™S (s)ads € D(A).
0

By Lemma 2,

A (/t e“’\sS(s)xds) = e MS(t)x — Cx + A/t e 8(s)zds

0 0

and we have
o0
A/ e S(t + s)zds
0

t
= eMAN-A)Cx - e’\tA/ e S (s)xds
0
= M- A)Cz - Cx)

t
—eM(e MS(H)z — Cz + A / e S (s)xds)
0

= /\e’\t/ e S (s)zds — S(t)z.
t
Therefore, we have
(A — A)/ e MS(t + s)xds = S(t)z
0

and (2) follows.

To prove (3), we use induction. Assume that

(A=A)*Cr =

1 o
(k—1)! / e MEIS () xdt.
T A
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By closedness of (A — A)~! and Fubini’s theorem

T (A—A)"! /OOO e MFLS (1) edt

1 o0
= (k— o / e ALk 1/ e S(t + s)xdsdt

= _1 / ¢k 1/ “’\“S Yrdudt
= o / /t'“ le=M S (u)zdtdu

= k' e"\“ kS (u)zdu.

By Theorem 3, we know that (A — A)~'Cxz is the Laplace transform of

S(t)z, and so we have

d’n o0
—(A—A)” 1cgcz(—l)”/ e S (t)zdt.
dX 0

Thus we have

(A—A)~ oy

1 4"

. —(n+1) —(_ - 1
(A= A) Cz=(-1)" 'd/\"(/\ A)" Cu.
By the Post-Widder inversion theorem
_ L1 myntl dn .
Sit)x = lim (-1) —75(;) == A)7IC sy
= lim (I—-—A) () O
n—~o0

for x € X. In the Cy semigroup theory (C = I), n/t is in the resolvent
set of A and lim,, .o, n/t(n/t — A)~lz = z. So we have the exponential
formula for Cy semigroup. Since the resolvent set of the generator of C
regularized semigroup may be empty, this argument is not valid.

Let A is the generator of bounded strongly uniformly continuous C
regularized semigroup. In [3], deLaubenfels have introduced Hille-Yosida
space Zy for A and showed that Az, is the generator of the contraction
Cy semigroup {T(t) : t > 0} on Zy and S(t)x = T(t)Cx for all x € X.
This argument can be extended to exponentially bounded C' regularized

semigroup. So we can establish the exponential formula for C' regularized
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semigroups which are exponentially bounded by using Cy semigroup on
a Hille-Yosida space for A.

Next, we present exponential formula for C' regularized semigroup
whose antiderivative is exponentially bounded. Our result includes the
exponential formula for exponentially bounded C regularized semigroup.
We give a direct proof of our exponential formula without using a Hille-
Yosida space and its proof is a modification of that of Post-Widder

inversion theorem in [1].

Theorem 4. Let A be the generator of C regularized semigroup {S(¢) :
t > 0} satisfying || fo s)ds|| < Me“! for all t > 0. Then

n—oo

lim (I - iA> Czx=5(t)x
n

for all z € X.

Proof. By Theorem 3 and integration by part we have

A A= A)"Cz - S(t)x
_ A" > —As P 1 _
= (n—l)!/o € S(s)zds — S(t)x
A"L

= (n — /OOO e‘Assn—l(S(s)l‘ - S(t):l:)dg

- /000(/\3-(71—1))(1"\“3”2 [ (st = stoa)dras

Jit
A\

= m/ﬂ (As — (n—1))e *s""2F(s)ds,

where F(s) = [’ (S(r)z — S(t)x)dr.

Let t > 0 and let A = n/t. By change of variable. we have

(I - ;A)‘” Cx - S(t)x

n" 1 [> —nu, n—2
= it (n(u—1)+ Lye """ F(tu)du.
. . . ()
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Let £ > 0 be given. Since S(t)z is continuous in ¢t > 0, there exists
0 < 6 < 1 such that ju — 1} < ¢ implies

HFWM|§[uHﬂﬂm—SanWh§ﬂu—na

By the exponential boundedness of the antiderivative of S(t), there exists
a constant M such that || F(s)|| < Mie**.

Therefore,
n 13
I (1-34) " Cz—S(t)al|
n" 1 > —nu, n—2
< moTiE ), In(u — 1) + 1le ™ u" || F(tu)}| du
n’ 1 1= —nu, n—
= (—n——l)'?/o In(u — 1) + 1|e”™u™2|| F(tu)|| du

n" 1 1+46 B 9
+(T;T)T?/1_5 In(u—l)—i—l!e u |lF(tu)||du

n" 1 i nlu — ewnuun—Q u U
g [ =D+ I F(t)ld

= I+ 1+ Is.

Sinceu<1—68<1landn(u—1)+1<0forn>1/J, we have

n" 1 e —nu, n—2 wtu
L < CEE (n —nu— e "u"" *Mie“ "du
n—U0!t J,
n My evt 1-6 ‘
< o 19 / (n—1Du"?2 — nu™ e "du

M ,wt n 1-46 16
I R L (n— 1)/ U e dy —/ nu™ le ™ dy
4 (n - 1)' 0 0

M wit n 1-6
et L S (n - 1)/ u" " 2e " dy

1-4
+ [e—nuun~1'l(1)“‘S _ (TL ;= 1)/ un—?()vnudu>
) 0

I ot n
_ ."[1(/ n CAn(l_é)(l . (S)Tl*l
t (n—1)
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Let an = (M1e?t/t)(n™/(n — 1)1)e 1= (1-6)""1. Then limp, 00 ans1/an
= limy oo (1+1/n)"e~ 179 (1-6) = €%(1-6) < 1. Thus lim,_.s a,, = 0.
Since || F(tu)|| <tlu—1lefor [u—1| < dand ju—1| < < 1,

n" 1+46
I, < —/ In(u—1) + e 4" 2|u — 1|due
1

(n—1!J1_s
n" 1+8 1+4
< C3=] </ n(u — 1)2e ™y 2dy +/ e M2y — 1|du) €
— 1) \Vi-s 1-6
n" 1+4
G — n(u—1)% + Ve ™y 3y | ¢
(n—1!'\Vis
nn &0 n n—1 n—2y_ —nu
< CE A (nu” = 2nu™ " + (n+ 1)u""%)e ™du | €
n" n! (n—1)! (n—2)!
- (n —_ 1)] (nnn+1 —2n nn + (n + 1) nn—1 )6
2n
T on-1

Note that e™”"u™ is decreasing on u > 1+ 6§ for all m. Choose
no > wt. Since n{u —1)+1 >0 for u > 1+ 4, for all n > ny we have

n" 1 > —nu, n—2 wiu
I; < m; [n(u— 1) + e ™ u" " Me“ du
_1) s

I+
n+1 M o}
= oo n 1)'71/ (u = 1)e~ "2 dy
n—1) 1+6
4 n" _]\_/[_1 > e—nuun—Qewtudu
(=1t Jigs

+1 )
_ n" % o (u _ 1)un—noe—(n—no)u€~nguung—2€wtudu
(n-=1!t Jis

n ; o0
+ n All u'n—noe—(n—no)ue—nguuno—QewtudU
(n=1!t Jiys

nrH—l

IN

A/-[l —(n—np)(1+9) n-—n > —nou, ng-—-2 _witn
— P 1+4 0 u—1)e "OUYO T e eV dy
(TI, - 1)' t 144

nt My —(n—ng)(1+6) e o —ngu, ng—2 wtu
+ e ! 0 (1+46) 0 e W2  du.
(n—1)! ¢t 146
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Let b, and ¢, be the first and second term in the last equation. Then

. bn+1 . 1 e —(146) =5 -

lim 2 = lim (14— e 1+ =e°1+0)<1
n—00 n n—oo n

. Cn+1 . 1 ntl —(1+6) iy

lim = lim (1+— e (1+6)=e°(1+40)<1.
n—oo  Cp n—oo n

So lim;, 0 by, = 0 and lim, .o ¢, = 0.

Therefore we have

t n
lim || <I— ;A) Cz — S(t)z|l| < 2e.

n—o0

Since ¢ is arbitrary, the result follows.
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