Filter-Free Wavelength Conversion Using Mach-Zehnder Interferometer with Integrated Multimode Interference Semiconductor Optical Amplifiers

  • Received : 2003.11.06
  • Published : 2004.08.31

Abstract

We propose a filter-free wavelength conversion using a Mach-Zehnder interferometer with monolithically integrated $2{\times}2$ multimode interference semiconductor optical amplifiers (MMI-SOAs). The device has been optimized by considering a non-homogeneous carrier distribution due to the self-imaging properties of the MMI-SOA. Static measurements show an extinction ratio of up to 18 dB and an input signal rejection ratio of up to 20 dB.

Keywords

References

  1. J. Lightwave Technol. v.14 Wavelength Conversion Technologies for WDM Network Applications Yoo, S.J.B
  2. Electron. Lett. v.35 20Gbit/s Optical Wavelength Conversion in All-Active Mach-Zehnder Interferometer Fjelde, T.;Wolfson, D.;Hansen, P.B.;Kloch, A.;Janz, C.;Coquelin, A;Guillemot, I.;Gaborit, F.;Poingt, F.;Dagens, B.;Renaud, M.
  3. Electron. Lett. v.36 Efficient Regenerative Wavelength Conversion at 10Gbit/s over C- and L-Band (80nm span) Using a Mach-Zehnder Interferometer with Monolithicaaly Integrated Semiconductor Optical Amplifiers Dulk, M.;Ficher, St.;Gamper, E.;Vogt, W.;Gini, H.;Mechior, W.;Hunziker, W.;Poulsen, H.N.;Clausen, A.T.;Buxens, A.;Jeppesen, P.
  4. Electron. Lett. v.34 All-Active Dual-Order Mode Mach-Zehnder Wavelength Converter for Co-Propagative Operation Janz, C.;Poingt, F.;Pommereau, F.;Gaborit, F.;Ottenwalder, D.;Guillemot, I.;Dagens, B.;Renaud, M.
  5. Electron. Lett. v.35 All-Active Dual-Order Mode (DOMO) Mach-Zehnder Wavelength Converter for 10 Gbit/s Operation Janz, C.;Poingt, F.;Pommereau, F.;Grieshaber, W.;Gaborit, F.;Leclerc, D.;Guillemot, I.;Renaud, M.
  6. Electron. Lett. v.36 Active Multi-Mode-Interferometer Semiconductor Optical Amplifier Hamamoto, K.;Gini, E.;Holtmann, C.;Melchior, H.;Sudo, S.;Mori, K.;Sasaki, T.;Yamaguchi, M.
  7. IEEE Photon. Technol. Lett. v.14 Experimenta Demonstration of All-Optical Regeneration Using an MMI-SOA De Merlier, J.;Morthier, G.;Verstuyft, S.;Van Caenegem, T.;Moermen, I.;Van Daele, P.;Baets, R.
  8. IEEE J. Quantum Electron. v.27 Analysis of z-Invariant and z-Variant Semiconductor Rib Waveguides by Explicit Finite Difference Beam Propagation Method with Nonuniform Mesh Configuration Chung Y.;Dagli, N.
  9. Opt. Comm. v.170 Spectral Characteristics of Optical Pulse Amplifications with a Holding Light in Semiconductor Optical Amplifiers Kim, J.;Oh, K.;Cho, K.
  10. IEEE Photon. Technol. Lett. v.12 All-Optical Switching by Counterpropagating Operation in Cascaded Semiconductor Optical Amplifiers Kim, J.;Oh, K.;Kim, H.;Cho, K.
  11. J. Lightwave Technol. v.LT-5 Recombination, Gain and Bandwidth Characteristics of $1.3\;{\mu}m$ Semiconductor Laser Amplifiers Wang, J.;Olesen, H.;Stubkjaer, K.
  12. J. Lightwave Technol. v.10 Detailed Dynamic Model for Semiconductor Optical Amplifiers and their Crosstalk and Intermodulation Distortion Durhuus, T.;Mikkelsen, B.;Stubkjaer, K.E.
  13. Opt. Quantum Electron. v.19 Absorption and Dispersive Bistability in Semiconductor Injection Lasers Kawaguchi, H.
  14. J. Appl. Phys. v.76 Lateral Carrier Diffusion and Surface Recombination in InGaAs/AlGaAs Quantum-Well Ridge-Waveguide Lasers Hu, S.Y.;Corzine, S.W.;Law, K.K.;Young, D.B.;Gossard, A.C.;Coldren, L.A.;Merz, J.L.
  15. J. Lightwave Technol. v.17 Strong Enhancement of Light Extraction Efficiency in GaInAsP 2-D-Arranged Microscolums Baba, T.;Koyama, F.;Iga, K.