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This paper investigates the impacts of array weight 
errors (AWE) in an antenna array (AA) on a parallel 
interference cancellation (PIC) receiver in uplink 
synchronous and asynchronous direct sequence code 
division multiple access (DS-CDMA) systems. The 
performance degradation due to an AWE, which is 
approximated by a Gaussian distributed random variable, 
is estimated as a function of the variance of the AWE. 
Theoretical analysis, confirmed by simulation, 
demonstrates the tradeoffs encountered between system 
parameters such as the number of antennas and the 
variance of the AWE in terms of the achievable average bit 
error rate and the user capacity. Numerical results show 
that the performance of the PIC with the AA in the DS-
CDMA uplink is sensitive to the AWE. However, either a 
larger number of antennas or uplink synchronous 
transmissions have the potential of reducing the overall 
sensitivity, and thus improving its performance. 
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I. Introduction 

Direct sequence code division multiple access (DS-CDMA) 
systems exhibit a user capacity limitation in the sense that there 
exist a maximum number of users that can simultaneously 
communicate over multipath fading channels for a specified 
level of performance per user. This limitation is caused by co-
channel interference, which includes both multiple access 
interference (MAI) between the users and intersymbol 
interference imposed by the channel-induced dispersion. 
Therefore, the interference rejection techniques for combining 
a cell site adaptive antenna array (AA) and an interference 
cancellation (IC) have been proposed to combat the effects of 
the co-channel interference, and thus increase system capacity 
[1], [2]. When the AA is used to suppress interference arriving 
from different directions with the desired signal, IC is used to 
cancel interference signals originating from the same direction 
which are not suppressed in the AA.  

Previous studies [3] have assumed ideal error-free array 
weights and have neglected the effects of array weight errors 
(AWE) on the performance of combined AA and IC receivers in 
DS-CDMA systems. However, it is important to know how 
these errors degrade performance, since the actual performance 
of the system is dependent upon the implemented weights which 
are directly used as an estimate of the array response vector to 
regenerate the signals in the IC receiver. Besides AWE, the 
effects of the array geometry error must not be ignored in the 
direction-finding algorithm for the AA weights. However, in this 
paper, a blind algorithm is considered without estimating the 
user’s direction. Therefore, it is reasonable that the array  
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Fig. 1. Block diagram of a combined AA and PIC receiver structure. 
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geometry error be considered as one of the factors resulting in the 
AWE. The AWE which arises due to imperfect knowledge 
concerning the array element positions, computational error caused 
by finite-precision arithmetic, quantization error, and 
implementation error caused by component variation [4], is to be 
modeled by a Gaussian distributed random variable [5]. Therefore, 
this work investigates the effects of AWE on the performance of the 
combined AA and parallel IC (PIC) receivers in the DS-CDMA 
uplink. The performance degradation due to the AWE, which is 
approximated by a Gaussian distributed random variable, is 
estimated as a function of the variance of the AWE. Theoretical 
analysis, confirmed by simulation, demonstrates the tradeoffs 
between the system parameters, such as the number of antennas 
and the variance of the AWE in terms of the achievable average bit 
error rate (BER), and the user capacity of two different uplink 
scenarios, namely that of a conventional asynchronous transmission 
and a synchronous transmission. Uplink synchronous transmission 
has been proposed for reducing the effects of MAI in terrestrial and 
broadband mobile systems [6]-[9] with the additional benefit of 
having a lower multi-user detection, or IC complexity [10], as well 
as showing an improved AA, or IC performance [11], [12] than that 
of equivalent asynchronous systems. 

The remainder of the paper is organized as follows. The 
channel and system model are outlined in section II. The 
performance is analytically derived and evaluated for both 
uplink synchronous and asynchronous scenarios in section III. 
Our numerical results are presented in section IV, while our 
conclusions are provided in section V. 

II. Channel and System Model 

We consider DS-CDMA uplink in a single cell where the 

cell site AA has the M elements. The received signals are 
assumed to undergo frequency-selective Rayleigh fading 
channels. Perfect power control is also assumed. Figure 1 
shows the block diagram of a combined AA and PIC receiver 
structure. In this paper, the PIC is considered because the PIC 
structure has many advantages such as a relatively small 
processing time, fairness among users, and performance 
stability. Assuming the presence of  active users, the signal 
received at the input of the AA is expressed as 
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where P is the average power,  is a user 
specific pseudo-noise (PN) sequence for an asynchronous 
scenario, and  is an orthogonal sequence 
multiplied by the PN sequence for a synchronous scenario, 
where  is the PN randomization 
sequence which is common to all the uplink channels in a cell 
and used for maintaining the CDMA system’s orthogonality 
and  is the orthogonal 
channelization sequence [6]. Here,  for  
and  otherwise. The durations of the chips in the PN 
and the orthogonal sequences are denoted by T  and T , 
respectively, and we assume for simplicity that  is equal to 

. The term  is the k-th user’s baseband modulated 
data waveform,  is the propagation delay, and  is the 
carrier phase. The symbol  is assumed to be an 
independent Rayleigh random variable showing a fading 
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magnitude of the k-th user on the l-th propagation path. Assuming 
that Rayleigh fading is encountered, the received signal magnitude 

 has a probability density function given by 1,,1,0 )( −⋅⋅⋅= kLl    
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The parameter Ω  is the second moment of 
 with , and we 

assume that  is related to the second moment of the main 
tap  in the exponential multipath intensity profile (MIP) 
according to 

)(k
l

[( )(k
lβ)(k

lβ

Ω

])) ..( 2)(k
l Eei =Ω

)(k
lΩ

)(
0
k

1)(1
0
)(

=Ω∑ −
=

k
l

L
l

k

( ) 0,10for,exp )()(
0

)( ≥−≤≤−Ω=Ω δδ       kkk
l Lll ,   (3) 

where reflects the decay rate of the average path magnitude 
as a function of the path delay. Note that in a realistic channel 
model the main path typically conveys more than half of the 
total received signal power [13]-[15]. The vector  is 
the array response vector of antennas for the k-th user’s l-th 
path as expressed in [16] 
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where the array geometry is determined as a uniform linear 
array of M identical sensors, d is the spacing between the 
sensors, and  is the wavelength of the carrier frequency. All 
signals from MS arrive at AA in the cell site with the mean 

λ

direction of arrival, , which are uniformly distributed in 
. Finally,  is the spatially and temporally white 

Gaussian noise vector with a zero mean and per-antenna noise 
variance, which is stated as , where I is 
the M×M identity matrix,  is the antenna noise variance 
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transpose operator. 

2/0η

A RAKE receiver using maximal ratio combining is 
considered, where the number of fingers, Lr, is a variable less 
than or equal to the number of resolvable propagation paths 
associated with the k-th user, L(k). Note that a correlator receiver 
is shown in Fig. 1 as a simple example. We assume for the sake 
of simplicity coherent binary phase shift keying data 
modulation. Perfect channel estimation is also assumed. Note 
that the array weight vector at the initial stage of the PIC is 
repeatedly used at every subsequent stage [2], [6]. The received 
signal for the reference user (k=1) at the output of the q-th 
stage in the IC is expressed as 
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where  is the estimate of the Rayleigh fading magnitude 
of the k-th user’s l-th path,  denotes the tentative decision 
measured at the (q–1)th stage in the PIC, and  is the 
estimate of the array response vector of the k-th user’s l-th path 
at the q-th stage of the PIC. In general, structures of [17], [18], 
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weight vector for the AA in the (q–1)th stage of the PIC.  

Assuming that the MAI is spatially white, the optimal array 
weight of the k-th user at the l-th path can be shown to be 
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total number of paths is large and the code length used in 
CDMA systems is long. However, in practice, the estimated 
optimal weights are corrupted by random errors which arise 
due to imperfect knowledge of the array element positions and 
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the same value for all active users and the multipath index [5]. 
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Applying the common criterion of maximizing the signal-to-
interference-plus-noise ratio, we can determine the optimal 
array weights at the q-th stage in the PIC [19]. Additionally, 
using the general analysis of the PIC in [20], the output signal 
at the AA becomes 
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where  is the information bit to be detected,  is the 
preceding bit, while  and . 
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 is also 
defined as the estimated spatial correlation between the array 
weight vector and the estimated array response vector where 

 is the estimated error of spatial correlation. The PN or 
Walsh-PN continuous partial correlation functions, 

 and , 
can be expressed by a discrete aperiodic cross-correlation 
function [6], [21]. From (7a) thru (7d), we see that the output 
consists of four terms. The first term represents the desired 
signal component to be detected. The second term represents 
the MAI inflicted by the (K—1) other simultaneous users 
after being cancelled at the q-th stage in the PIC. The third 
term is the self-interference (SI) imposed by the reference 
user, while the fourth term represents the effects of the 
AWGN. From (7), we can obtain the RAKE output, 
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III. Analysis of the Effects of AWE on the Combined 
AA and PIC Receiver 

1. Uplink Asynchronous Scenario 

To analyze the performance of AA with the PIC receiver 
used for a conventional asynchronous DS-CDMA uplink, we 
employ the Gaussian assumption in the BER calculation, since 
it is common, and since it was found to be quite accurate even 
when used for small values of K(<10), provided that the BER 
is 10-3 or higher [22]. The variance of MAI, conditioned on 
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where  is the signal energy per bit,  is the data bit 
duration, and  is the processing gain. The term 

 is the BER at the (q–1)th stage in the PIC. More 
detailed derivations of spatial correlation statistics such as 

 and  are described in the Appendix. 
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while the variance of the AWGN noise term is given by 
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From (8) thru (10), the variance of total interference is equal 
to the sum of all interference and noise terms, 

Finally, the mean 
output of the receiver is 
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Therefore, the SNR at the output of the receiver may be written as 
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Therefore, the average BER can be expressed as  
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2. Uplink Synchronous Scenario 

In this subsection, an uplink synchronous scenario is considered. 
 

The performance is analyzed to investigate the effect of AWE 
on the combined AA and PIC structure in the synchronous DS-
CDMA uplink. In the synchronous DS-CDMA uplink, the 
MSs are differentiated by the orthogonal codes, and the timing 
alignment among mainpaths is achieved with the adaptive 
timing control in a similar manner to a closed loop power 
control algorithm [6], [8]. Here, the arrival time of the first 
RAKE receiver branch signal is assumed to be synchronous, 
while the remaining branch signals are asynchronous. 
Therefore, we can consider the arrival times of the paths are 
modeled as synchronous for the first RAKE receiver branch 
(i.e., l=0) but as asynchronous in the rest of the branches (i.e., 

). Extending the derivations of [7] and [11], the variance 1≥l
of the MAI for l=0, conditioned on ( )1

lβ , can be expressed as 
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The variance of the MAI for  can be formulated as 1≥l

{ }

{ }[ ] { }[ ]{ }.)1(4

6
)1(

2),1(2),1()(

2

1

0

)(

2)1(
2

2

)(

,,

k
lj

k
lj

k
e

K

k

L

j

k
j

l
b

ECEqP

N
NTE

k

mailq

∆+−Ω×

−
=

∑ ∑
=

−

=

βσ

 

(16) 

From (9) – (11), (15), (16), the SNR at the output of the 
receiver may be expressed as (17). 

The average BER may be evaluated as 
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IV. Numerical Results 

In this section, we investigate the effects of the various 
parameters on the achievable BER performance of the 
combined AA with a PIC receiver in the uplink asynchronous 
and synchronous DS-CDMA systems over a dispersive 
Rayleigh fading channel exhibiti17ng an exponential MIP with 
the decay factor of =1.0. In all evaluations, the processing 
gain is assumed to be 128, the iteration number in the PIC is set 
to be zero (i.e., RAKE receiver) or one, and the number of 
propagation paths and RAKE receiver fingers is assumed to be 
the same for all users, namely two.  

δ

Figures 2, 3, and 4 show the effect of the AWE in the uplink 
conventional asynchronous DS-CDMA systems. Figure 2 
shows the achievable average BER performance as a function 
of Eb /N0, when the variances of AWE are assumed to 0.0 and 
0.5. For illustration, K=12 and M=4 are assumed. Analytical 
results confirmed by simulation, demonstrate the effects of the 
 

 

PIC with iteration 1 (analysis) 
PIC with iteration 0 (analysis) 
PIC with iteration 1 (sim) 
PIC with iteration 0 (sim) 

Fig. 2. BER vs. Eb/N0 in asynchronous DS-CDMA uplink (K=12, 
M=4). 
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Fig. 3. BER vs. variance of the AWE in asynchronous DS-CDMA 
uplink (K=72, Eb/N0 = 20 dB). 
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Fig. 4. BER vs. number of antenna in asynchronous DS-CDMA 
uplink (K=72, Eb/N0=20 dB). 
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AWE on the PIC receiver. It is shown that 0.5 dB in terms of 
Eb /N0 is more greatly required in the PIC receiver with one 
iteration at BER=10-3. That is to say, the performance of the 
PIC receiver with one iteration is more sensitive to the AWE 
than that of the RAKE receiver only because the AWE may 
directly affect the performance of the PIC. Figure 3 shows the 
average BER performance comparisons between the PIC 
receiver with one iteration and the RAKE receiver structures as 
a function of the variance of the AWE for the various values of 
the number of antennas such as 2, 4, and 8, when K=72 and 
Eb/N0=20 dB. Note that there is a cross point between the BER 
curves of the PIC receiver with one iteration and the RAKE 
receiver, when the variance of the AWE increases from 0 to 1. 
This indicates that the larger AWE may make the performance 
of the PIC receiver worse than that of the RAKE receiver, even 
though the PIC is employed to improve the performance of the 
RAKE-only receiver. Additionally, it is shown that the tolerable 
margin of the variance of the AWE may increase, as the 
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number of antennas increases. For example, the tolerable 
margin of the AWE is equal to 0.1 when M=2, while it 
increases to 0.6 when M=8 at the BER of 10-3. This result 
demonstrates that a larger number of antennas can be a possible 
solution to improve the performance degradation due to the 
AWE. Figure 4 shows the effect of the number of antennas on 
the BER performance which presents the same tendency as in 
Fig. 3. From a practical point of view, there may be a physical 
restriction on increasing the number of antennas.  

From now on, the effect of the AWE in the uplink synchronous 
DS-CDMA systems is investigated. The performance of the PIC 
receiver in the uplink synchronous system is evaluated and 
compared with that in the conventional uplink asynchronous 
system in terms of the various parameters such as the variance of 
the AWE and the number of antennas. Figure 5 shows that the 
uplink synchronous transmission in the PIC receiver may reduce 
the sensitivity to the AWE. For example, at the BER of 10-3, the 
synchronous transmission may relax the tolerable variance of the 
AWE from 0.5 to 0.7 when M =8. This is because the 
orthogonality due to the uplink synchronous transmission 
makes the input signals at the first stage of the PIC more 
reliable. Additionally, we can see that the performance in the 
PIC receiver with the uplink synchronous transmission for 
M=2 is the same as that with the asynchronous transmission 
for M=4 when the variance of the AWE is 1. This means that a 
synchronous transmission with a smaller number of antennas 
can have the same performance as an asynchronous 
transmission with a larger number of antennas, when the AWE 
is large. In Fig. 6, at the BER of 10-3, the number of users is 
shown as a function of the variance of the AWE in both uplink 
asynchronous and synchronous DS-CDMA systems when 
Eb /N0 =20 dB. When the variance of the AWE is 0.5, the 
capacity improvement in the PIC receiver in the uplink 
asynchronous DS-CDMA for M = 4 is around 50% in 
 

 

Fig. 5. BER vs. variance of the AWE in both asynchronous and 
synchronous DS-CDMA uplink (K=72, Eb/N0=20 (dB)). 
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comparison with the case for M=2. Furthermore, when the 
variance of the AWE is 0.5, the improvement in the 
synchronous DS-CDMA PIC receiver for M=4 becomes 60% 
in terms of the number of users, when compared with the 
asynchronous DS-CDMA PIC receiver. In summary, the PIC 
receiver may achieve the capacity improvements by employing 
the uplink synchronous transmission as well as the larger 
number of antennas, even though the PIC receiver is very 
sensitive to the AWE. Tables 1 and 2 tabulate the user capacity 
in terms of the variance of the AWE and the number of 
antennas. Comparing Tables 1 and 2, we can see the break 
even points around 0.6 of the variance of the AWE for M=8, 
where the PIC cannot improve the performance further. 
Intuitively, we guess the effect of the AWE on the serial IC 
(SIC) receiver may be similar to that on the PIC receiver in this 
paper because both IC receivers will show a similar performance 
when perfect power control is assumed. If the power control is 
assumed to be imperfect, then the performance difference  

 

 

Fig. 6. Number of users vs. variance of the AWE in both async and 
sync DS-CDMA uplink (Eb/N0 = 20 (dB), BER=10-3). 
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Table 1. User capacity (Eb/N0 = 20 (dB), BER=10-3, PIC with 
iteration 1). 

User capacity (BER=10-3) 

Async Sync 
Variance of 

the array 
weight error M=2 M=4 M=8 M=2 M=4 M=8 

0.0 > 96 > 96 > 96 > 96 > 96 > 96 

0.2 48 > 96 > 96 72 > 96 > 96 

0.4 24 50 96 36 72 > 96 

0.6 16 30 58 24 46 86 

0.8 < 12 22 39 18 32 60 

1.0 < 12 15 26 13 24 45 
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Table 2. User capacity (Eb/N0=20 (dB), BER=10-3, PIC with  
iteration 0). 

between the SIC and the PIC would be seen. However, the 
difference may be decreased when the uplink synchronous 
transmission is employed. 
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User capacity (BER=10-3) 

Async Sync 
Variance of 

the array 
weight error M=2 M=4 M=8 M=2 M=4 M=8 

0.0 19 60 > 96 29 96 > 96 

0.2 14 43 > 96 23 70 > 96 

0.4 < 12 31 77 18 48 > 96 

0.6 < 12 24 59 14 36 90 

0.8 < 12 19 47 < 12 30 72 

1.0 < 12 17 36 < 12 25 60 

 

V. Conclusions 

In this paper, the effect of AWE in the PIC receiver in the 
uplink synchronous and asynchronous DS-CDMA system was 
investigated, when the AWE was modeled by be Gaussian 
distributed random variable. The performance degradation due 
to the AWE was estimated as a function of the variance of the 
AWE. Numerical results show that the performance of the PIC 
receiver with one iteration in the DS-CDMA uplink is more 
sensitive to the AWE than that of the RAKE receiver. However, 
either a larger number of antennas or uplink synchronous 
transmissions have the potential of reducing the overall 
sensitivity, and thus improving its performance. The 
consideration of more realistic assumptions such as the effect 
of power control [7], [23] and mutual coupling [24] is the 
subject of our future research. Additionally, more careful 
consideration of the SIC related with this work is also 
interesting for further study. 

Appendix. Characteristics of Spatial Correlation 
Statistics 

The spatial correlation can be expressed as 

 

The second order characterization of the spatial correlation is 
calculated as 

 

where  
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where  is the zero order Bessel function of the first kind. 
Therefore,  
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Similarly, we can obtain the second order statistic of the 
estimated error component, expressed as follows: 
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