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We consider electromagnetic field radiation properties 
of a current filament placed at the origin of a cylindrical 
frequency selective surface (CFSS). The CFSS consists of 
free standing metal strips with two-dimensional 
periodicity. The analysis is based on a cylindrical Floquet 
mode wave expansion technique. We observed that near 
the half wavelength resonance frequencies, there exist 
some specific frequencies at which the surface becomes 
totally transparent. 
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I. Introduction 

Non-planar frequency selective surfaces such as radomes or 
subreflectors in reflector antenna systems are used in practice. 
These surfaces may be studied by employing a Floquet 
theorem in a manner analogous to planar periodic surfaces [1]. 
By this technique, G. Loukos and J.C. Vardaxoglou [2] 
analyzed electromagnetic wave propagation inside strip grating 
frequency selective surface waveguides with a cylindrical 
cross-section. In this letter, we consider the two-dimensional 
problem of a cylindrical transverse magnetic field to z direction 
(TMz) wave incidence on a cylindrical frequency selective 
surface (CFSS) made up of finite length strips. An axial current 
filament located at the origin generates the incident wave. 

The cylindrical structure of radius a consists of periodically 
arranged metal strips with periodicities d and b in z and φ 
directions, respectively. As seen from the unit cell of the 
 

 

Fig. 1. Unit cell of the problem. 
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problem in Fig. 1, length b subtends an angle α=2π/N, where N 
is the number of strips in φ direction. The strip dimensions are 
denoted by l and w. We assume the strip width w to be very 
small compared to the wavelength. In that case, a strictly axial 
electric current, Kz , should yield a good approximation for the 
current induced on the surface of the strip. Hence, all scattered 
field components may be derived from a single axial 
component of a vector potential, Az. Floquet mode expressions 
for Az are given in [1] as 
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Here, I
mna  and II

mna  are unknown weighting coefficients to 
be determined, while mNJ  and mNH  denote the Bessel and 
Hankel functions of order mN, respectively, mnψ  is the 
Floquet modes, and kn denotes the propagation constants in the 
radial direction. In addition, 0µ  and 0ε  denote the free space 
permeability and permittivity, respectively. 

The magnetic and electric fields are found from 
III

zz
III A ,1,

0
aH ×∇= µ  and III

j
III ,1,

0
HE ×∇= ωε . Weighting 

coefficients I
mna  and II

mna  of the two infinite summations 
are related to unknown current Kz through the use of 
appropriate boundary conditions, 
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The bracket in (4) denotes the inner product defined by  
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while the asterisk denotes the complex conjugate.  
In absence of the cylindrical structure, the magnetic vector 

potential of a current filament carrying a total current of I0 and 
located at the origin is given in [3] as 
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An electric field integral equation is obtained by requiring the 
total tangential electric field to vanish on a strip; that is, 

0=+ II
z

inc
z EE  on Sstrip ,           (7) 

where inc
zE  represents the electric field radiated by the current 

filament at the origin, and Sstrip is defined by, 

{ }2222 ;; ll
a

w
a

w
strip zaS <<−<<−== φρ .     (8) 

For a moment method solution and Galerkin’s method, 
unknown current Kz is written as a sum of entire domain basis 
function fq with unknown coefficient iq , 

( )∑∑
==

+==
Q

q

l
l

q
q

Q

q
qqz zifiK

1
2

1

)(sin π .        (9) 

Then, we obtain a matrix equation in the form, 
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Finally, the average power radiated from length d of the 
current filament in the presence of the CFSS is determined 
from 
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and the normalized power is 
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where Pinc is the power radiated in the absence of the CFSS for 
a unit current amplitude (I0=1). Using the expressions for the 
basis functions and the inner products, (14) can be written as 

{ } JKK
inc

rad CCCakJCC
P
P

zz

2

0000 )(Re21 +−= ,    (15a) 

where 

∑
=

−−=
Q

q
qqK

q

z
iC

1

)1(1 ,              (15b) 

d
wlC

α
π 2

0
2

= , and               (15c) 

∑
∞

−∞=

=
m

mNJ akJ
bwm

bwmC
2

0 )(
/

)/sin(
π

π .        (16) 

Plots of JC  versus frequency for values of 6≥N  reveal 
that the sum tends to zero at several frequencies, which 
correspond to the zeros of )( 00 akJ . Close to these 
frequencies, the second and third terms in (15a) vanish and 
consequently normalized power equals unity. That is, at these 
frequencies radiated power becomes identical to the incident 
power. Since the cut-off frequencies of z

n0TM  modes in a 
conducting circular waveguide having radius a are determined 
by the zeros of )( 00 akJ , these frequencies for which the 
power is totally transmitted will be referred from here onwards 
as “TMz cut-off frequencies.” On the other hand, the moment 
method solution of (15a) yields additional frequencies at 
which the power is totally transmitted, and these frequencies 
are different than the “TMz cut-off frequencies” discussed 
above. 

II. Numerical Results 

In the calculations of infinite summations, we use different 
asymptotic expressions [4] for the large and small argument 
regions of Bessel functions. But for imaginary values of the 
propagation constants kn in (3a), modified Bessel functions are 
used. 

The moment method solution requires the accurate 
computation of matrix elements Zpq in (11), which involves 
products of Bessel functions in the form 

mNjakHakJ nmNnmN π/)()( )2( ≈  as |mN| →∞,     (17) 

thereby resulting in a slowly convergent infinite series. The 

convergence of the series is accelerated using the technique 
discussed in [5] to obtain values of Zpq accurately and 
efficiently. 

The moment method solution of the induced current is 
obtained by using seven sinusoidal basis functions. For the 
frequency ranges given in all plots, strip width w remains less 
than 1/20 of the wavelength. 

For the plots in Figs. 2 and 3, the unit cell dimensions are 
b=50 mm, d=100 mm, w=4 mm, and l=90 mm, but the 
radius a=bN/2π varies with the number of elements in φ 
direction, N=4, 6, 8, 16, 32, and 64. As shown in Fig. 2, the 
normalized powers for all N values become zero at the 
resonance frequency occurring near f = 1.84 GHz 
(corresponding to l=0.55λ0). Numerical results show that if  
 

 

Fig. 2. Variation of normalized power with frequencies for different
numbers of elements: N=4, 6, 8. 
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Fig. 3. Variation of normalized power with frequencies for different
numbers of elements: N=16, 32, 64. 
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N<6 no “TMz cut-off frequency” exists, but for N=6 and 
N=8 the “TMz cut-off frequencies” are at f=2.405 and 1.805 
GHz, respectively. Note that for N=8, the “TMz cut-off 
frequency” is very close to the resonance frequency at 1.84 
GHz, so a spike occurs at 1.805 GHz. 

As the number of elements increases to N=64, the curves 
near the resonance frequency become sharper. For example, if 
N=64, the “TMz cut-off frequencies” are 0.513, 0.811, 1.11, 
1.40, 1.70, 1.99, 2.28, and 2.58 GHz. Hence, the normalized 
power equals unity near these frequencies. 

The plots given in Fig. 4 for N=64 strip elements show that 
the resonance frequency changes with the strip lengths. For 
l=85, 90, and 95 mm, the resonances occur at frequencies 1.94, 
1.84, and 1.73 GHz, respectively. 
 

 

Fig. 4. Variation of normalized power with frequencies for different
strip lengths: l = 85, 90, 95 mm. 
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Fig. 5. Variation of normalized power with frequencies for different
unit cell widths: b = 45, 50, 55 mm 
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We observe that the resonance frequency also varies if the 
width of unit cell b is varied, as shown in Fig. 5. The plots for 
N=64 strip elements and b=45, 50, and 55 mm show that the 
surface resonates at frequencies 1.88, 1.84, and 1.80 GHz, 
respectively. The sharp ripples for the b=45 and 55 mm curves 
are due to the “TMz cut-off frequencies” that are very close to 
the resonance frequencies. 

As seen from the figures, there are regions where normalized 
power exceeds unity. This implies that the real part of the input 
impedance seen by the current filament becomes greater than 
the input impedance that would be seen if the metal strips were 
not present (that is, the filament radiates into the free space). 
Therefore, given curves may also be visualized as the 
normalized input resistances seen by the current filament 
located at the origin. 

III. Conclusion 

For a TMz cylindrical wave excitation, the spectral response 
of the cylindrical structure consisting of metal strips is found to 
exhibit resonances that depend on the surface periodicity. At 
the resonance frequency, which occurs when the strip length is 
nearly the half wavelength, no real power is radiated by the 
current filament, so the surface is totally reflective. In addition 
to the resonance frequency, there exist some frequencies at 
which the surface becomes totally transparent, whereby all the 
power is transmitted outside the cylindrical structure. Some of 
these frequencies at which the surface is transparent correspond 
to cut-off frequencies of z

n0TM  modes of a conducting 
circular waveguide, which we referred to as “TMz cut-off 
frequencies.” 
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