ON THE HILBERT SPACE OF FORMAL POWER SERIES

B. Yousefi and R. Soltani

Abstract. Let $\{\beta(n)\}_{n=0}^{\infty}$ be a sequence of positive numbers such that $\beta(0) = 1$. We consider the space $H^2(\beta)$ of all power series $f(z) = \frac{\mathbf{P}}{n=0} \hat{f}(n)z^n$ such that $\frac{\mathbf{P}}{n=0} |\hat{f}(n)|^2 \beta(n)^2 < \infty$. We link the ideas of subspaces of $H^2(\beta)$ and zero sets. We give some sufficient conditions for a vector in $H^2(\beta)$ to be cyclic for the multiplication operator M_z . Also we characterize the commutant of some multiplication operators acting on $H^2(\beta)$.

Introduction

Let $\{\beta(n)\}$ be a sequence of positive numbers with $\beta(0) = 1$. We consider the space of sequences $f = \{\hat{f}(n)\}_{n=0}^{\infty}$ such that

$$||f||^2 = ||f||_{\beta}^2 = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 \beta(n)^2 < \infty.$$

The notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ shall be used whether or not the series converges for any value of z. These are called formal power series. Let $H^2(\beta)$ denote the space of such formal power series. These are Hilbert spaces with the norm $\|\cdot\|_{\beta}$ ([4]). The Hardy, Bergman and Dirichlet

Received Jun 28, 2004; Revised August 23, 2004.

²⁰⁰⁰ Mathematical Subject Classification: Primary 47B37; Secondary 47A16.

Keywords and phrases: Hilbert space of formal power series, multiplier, cyclic vector, bounded point evaluation, polynomially bounded, Farrell-Rubel-Shields Theorem, finite codimension subspace.

spaces can be viewed in this way when respectively $\beta(n) = 1, \beta(n) = (n+1)^{-1/2}$ and $\beta(n) = (n+1)^{1/2}$. Let $\hat{f}_k(n) = \delta_k(n)$. So $f_k(z) = z^k$ and then $\{f_k\}_k$ is a basis such that $\|f_k\| = \beta(k)$. Now consider M_z , the operator of multiplication by z on $H^2(\beta)$:

$$(M_z f)(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^{n+1}$$

where

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in H^2(\beta).$$

In other words

$$(M_z\hat{f})(n) = \begin{cases} \hat{f}(n-1) & n \ge 1\\ 0 & n = 0 \end{cases}.$$

Clearly M_z shifts the basis $\{f_k\}_k$. The operator M_z is bounded if and only if $\{\beta(k+1)/\beta(k)\}_k$ is bounded and in this case

$$||M_z^n|| = \sup_k \frac{\beta(k+n)}{\beta(k)}, \qquad n = 0, 1, 2, \dots$$

Throughout this paper we suppose that M_z is bounded. The composition operator C_{φ} on $H^2(\beta)$ is defined by $C_{\varphi}f = f \circ \varphi$ for $f \in H^2(\beta)$.

We denote the set of multipliers $\{\varphi \in H^2(\beta) : \varphi H^2(\beta) \subseteq H^2(\beta)\}$ by $M(H^2(\beta))$ and the linear transformation by φ on $H^2(\beta)$ by M_{φ} . Here if $\varphi \in M(H^2(\beta))$ and f is in $H^2(\beta)$, then

$$\varphi f = \left(\sum_{n=0}^{\infty} \hat{\varphi}(n)z^n\right)\left(\sum_{n=0}^{\infty} \hat{f}(n)z^n\right) = \sum_{n=0}^{\infty} \hat{h}(n)z^n$$

where $\hat{h}(n) = \sum_{k=0}^{n} \hat{\varphi}(k) \hat{f}(n-k)$. Each multiplier is a bounded analytic function ([3]).

Remember that a complex number λ is said to be a bounded point evaluation on $H^2(\beta)$ if the functional of point evaluation at λ , e_{λ} , is bounded. Each point of the disc $\{z : |z| < \liminf \beta(n)^{1/n}\}$ is a bounded point evaluation on $H^2(\beta)$ ([4,5]).

If Ω is a bounded domain in the complex plane, then by $C(\Omega)$, $H(\Omega)$ and $H^{\infty}(\Omega)$ we mean respectively the set of continuous functions, analytic functions and the set of bounded analytic functions on Ω . By $\|\cdot\|_{\Omega}$ we denote the supremum norm on Ω .

We say that a vector x in a Banach space X is a cyclic vector of a bounded operator A on X if

$$X = span\{A^n x : n = 0, 1, 2, \ldots\}.$$

Here $span\{\cdot\}$ is the closed linear span of the set $\{\cdot\}$.

Main results

Recall that $H^2(\beta)$ has division property: if $f \in H^2(\beta)$ and $f(\lambda) = 0$, then $f/(z-\lambda)$ is in $H^2(\beta)$. The open unit disc will be denoted by \mathbb{D} . If $\liminf \beta(n)^{1/n} = 1$, then $H^2(\beta) \subset H(\mathbb{D})$ and if $\sum_n \frac{1}{\beta(n)^2} < \infty$, then $H^2(\beta) \subset H(\mathbb{D}) \cap C(\bar{\mathbb{D}})$. Also note that the spectrum of M_z , $\sigma(M_z)$, is equal to the set $\{\lambda : |\lambda| \le r(M_z)\}$ where $r(M_z)$ is the spectral radius of M_z . Clearly $\liminf \beta(n)^{1/n} \le r(M_z) \le ||M_z||$. For a good source of this topics see [4,5,6,7,8,9,10].

In the following theorem we link the ideas of subspaces of $H^2(\beta)$ and zero sets.

Theorem 1. Let $r(M_z) = \liminf \beta(n)^{1/n} = 1$ and $ran(M_z - \lambda)$ be dense in $H^2(\beta)$ for every $\lambda \in \partial \mathbb{D}$. Also assume that $H^2(\beta)$ has division property. If M is an invariant subspace of $H^2(\beta)$ of finite codimension, and $\Omega = \{z \in \mathbb{D} : f(z) = 0 \text{ for all } f \in M\}$, then Ω is a finite set and $M = \{f \in H^2(\beta) : f(z) = 0 \text{ for all } z \in \Omega\}$.

Proof. First note that since $\liminf \beta(n)^{1/n} = 1$, the functions of $H^2(\beta)$ are analytic on \mathbb{D} . Suppose that Ω is infinite and let $\{z_j\}_{j=1}^{\infty}$ be distinct points of Ω . Let p_1, p_2, \ldots be polynomials in $H^2(\beta)$ such that

 $p_i(z_j) = 0$ for $j = 1, \ldots, i-1$ and i > 1, also $p_i(z_i) = 1$ for all $i \geq 1$. Now if $c_1p_1 + \cdots + c_np_n \in M$ where c_1, c_2, \ldots, c_n are in \mathbb{C} , then $c_1 = c_2 = \cdots = c_n = 0$. This contradicts the assumption that M has finite codimension in $H^2(\beta)$. Since each zero of an analytic function has finite multiplicity, Ω is indeed a finite set. For the second part note that if $f \in M$, then f(z) = 0 for all $z \in \Omega$. For the inverse inclusion suppose that $f \in H^2(\beta)$ and f(z) = 0 for all $z \in \Omega$. Also let $\Omega = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ and put $q(z) = (z - \lambda_1)(z - \lambda_2) \dots (z - \lambda_n)$. Since M is an invariant finite codimensional subspace of $H^2(\beta)$, by the hypothesis of the theorem $M = pH^2(\beta)$ for some polynomial p where p vanishes on Ω . Write p = qs. Here s is a polynomial such that $s(\lambda_i) \neq 0$ for $i = 1, \ldots, n$. Let λ be a root of s. If $\lambda \in \mathbb{D}$, then it should be $\lambda \in \Omega$ that is a contradiction since $s(\lambda_i) \neq 0$ for i = 1, ..., n. So $\lambda \in \mathbb{C}\backslash \mathbb{D}$. If $\lambda \notin \overline{\mathbb{D}}$, then $\lambda \notin \sigma(M_z)$ since $r(M_z) = 1$. So $M_z - \lambda$ is invertible which implies that $(z - \lambda)H^2(\beta) = H^2(\beta)$. If $\lambda \in \partial \mathbb{D}$, then $(z - \lambda)H^2(\beta)$ is dense in $H^2(\beta)$. Hence $M = pH^2(\beta) = \overline{qsH^2(\beta)} = qH^2(\beta)$. Since $H^2(\beta)$ contains constant functions, $q \in M$. Now if $f \in H^2(\beta)$ and f(z) = 0 for all $z \in \Omega = \{\lambda_1, \ldots, \lambda_n\}$, by division property we have $\frac{f}{g} \in H^2(\beta)$. So $f \in qH^2(\beta) = M$. This completes the proof. \square

Now we investigate the cyclicity of the multiplication operator M_z and we give some sufficient conditions for a vector to be cyclic for the multiplication operator M_z acting on $H^2(\beta)$.

Theorem 2. Let $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in H^2(\beta)$ with $\hat{f}(0) \neq 0$. If the sequence $\{\frac{\|M_z^n\|}{\beta(n)}\}_n \in \ell^2$ and $0 < \delta = \inf_n \frac{\beta(n+1)}{\beta(n)}$, then f is a cyclic vector of M_z on $H^2(\beta)$.

Proof. Put $M=span\{M_z^nf:n=0,1,2,\ldots\}$. Let $g=\sum_{n=0}^\infty \hat{g}(n)z^n$ be any vector in $H^2(\beta)$ such that $< M_z^nf,g>=0$ for all $n=0,1,2,\ldots$ It

will suffice to show that $g \equiv 0$. We note that

$$M_z^n f = \sum_{k=0}^{\infty} \hat{f}(k) z^{n+k} = \sum_{k=n}^{\infty} \hat{f}(k-n) z^k.$$

Now the relation $\langle M_z^n f, g \rangle = 0$ implies that

$$0 = \sum_{k=n}^{\infty} \hat{f}(k-n)\overline{\hat{g}(k)}\beta(k)^{2}$$
$$= \hat{f}(0)\overline{\hat{g}(n)}\beta(n)^{2} + \sum_{k=n+1}^{\infty} \hat{f}(k-n)\overline{\hat{g}(k)}\beta(k)^{2}.$$

Thus we have

$$\begin{aligned} |\widehat{g}(n)\beta(n)| &\leq |\frac{1}{\widehat{f}(0)\beta(n)}| \sum_{k=n+1}^{\infty} |\widehat{f}(k-n)\overline{\widehat{g}(k)}\beta(k)^{2}| \\ &= \frac{1}{|\widehat{f}(0)|} \sum_{k=n+1}^{\infty} |\widehat{f}(k-n)\beta(k-n)|.|\overline{\widehat{g}(k)}\beta(k)| \frac{\beta(k)}{\beta(k-n)\beta(n)}. \end{aligned}$$

Since $\|M_z^n\|=\sup_k \frac{\beta(n+k)}{\beta(k)}$ we have $c=\sup_{n,k} \frac{\beta(n+k)}{\beta(k)\beta(n)}<\infty$ and so

$$\beta(n+k) \le c\beta(k)\beta(n)$$

for all n and k. Thus for $k \geq n + 1$,

$$\beta(k) \le c\beta(k-n-1).\beta(n+1) = c\beta(k-n).\frac{\beta(k-n-1)\beta(n+1)}{\beta(k-n)}.$$

Therefore

$$\frac{\beta(k)}{\beta(k-n)\beta(n)} \leq c \frac{\beta(k-n-1)}{\beta(k-n)} \cdot \frac{\beta(n+1)}{\beta(n)}$$

$$\leq c \frac{\beta(n+1)}{\beta(n)} \cdot \sup_{m} \frac{\beta(m)}{\beta(m+1)}$$

$$\leq \frac{c}{\delta} \frac{\beta(n+1)}{\beta(n)}.$$

Since $\{\frac{\beta(n+k)}{\beta(n)\beta(k)}\}_n \in \ell^2$ for all k, clearly $\{\frac{\beta(n+1)}{\beta(n)}\} \in \ell^2$. We have

$$|\widehat{g}(n)\beta(n)| \le \frac{c||f||||g||}{\delta|\widehat{f}(0)|} \cdot \frac{\beta(n+1)}{\beta(n)}$$

for all n. Now since $\{\frac{\beta(n+1)}{\beta(n)}\}_n \in \ell^2$, we can see that M^{\perp} is finite dimensional and so there exists an integer m > 0 such that $(M_z^*)^m|_{M^{\perp}} = 0$ and $(M_z^*)^{m-1}|_{M^{\perp}} \neq 0$. Therefore

$$(M_z^*)^m(g) = (M_z^*)^m(\sum_{k=0}^{\infty} \hat{g}(k)z^k) = 0$$

and so $\hat{g}(k) = 0$ for all $k \ge m$. Thus for $h = \sum_{n=0}^{\infty} \hat{h}(n)z^n$ in M, $\hat{h}(k) = 0$ for all k < m. Since $f \in M$ with $\hat{f}(0) \ne 0$, it follows that m = 0. Thus $\hat{g}(k) = 0$ for all k and so $g \equiv 0$. This completes the proof. \square

Let $H^2(\beta) \subset H(\mathbb{D})$. We say that M_z is polynomially bounded on $H^2(\beta)$ if $||M_p|| \leq c||p||_{\mathbb{D}}$ for every polynomial p. In [2] we have shown that if M_z is polynomially bounded, then it is reflexive. In the following two theorems we suppose that $H^2(\beta)$ has division property, $\liminf \beta(n)^{1/n} = 1$, $\ker(M_z - \lambda)^* = \mathbb{C}e_\lambda$ for every λ in \mathbb{D} , M_z is polynomially bounded and the composition operator C_{-z} is bounded. Note that $(C_{-z}f)(\lambda) = f(-\lambda)$ for f in $H^2(\beta)$. In Theorems 3 and 4, under sufficient conditions we characterize the structure of an operator T when for some $n \in \mathbb{N}$, $TM_{\varphi^3} = (-1)^n M_{\varphi^3} T$, $\varphi \in M(H^2(\beta))$.

Theorem 3. Let $\sum_{n} \frac{1}{\beta(n)^2} < \infty$ and $\varphi \in M(H^2(\beta))$ be an odd univalent map. Also let for some $n \in \mathbb{N}$, $TM_{\varphi^3} = (-1)^n M_{\varphi^3} T$, $TM_{\varphi} + (-1)^{n+1} M_{\varphi} T$ is compact and $M_{\varphi^2} TM_{\varphi} = (-1)^n M_{\varphi} TM_{\varphi^2}$. Then there exists h in $M(H^2(\beta))$ such that $T = M_h$ if n is even and $T = M_g C_{-z}$ for some g in $M(H^2(\beta))$ if n is odd.

Proof. First let n be an odd integer number. Then we have

$$\begin{split} (TM_{\varphi^2} - M_{\varphi^2}T)M_{\varphi} &= -M_{\varphi^3}T + M_{\varphi}TM_{\varphi^2} \\ &= M_{\varphi}(TM_{\varphi^2} - M_{\varphi^2}T). \end{split}$$

Thus $SM_{\varphi} = M_{\varphi}S$ where $S = TM_{\varphi^2} - M_{\varphi^2}T$. Note that for $f \in H$,

$$\langle f, M_{\varphi}^* S^* e_{\lambda} \rangle = \langle M_{\varphi} S f, e_{\lambda} \rangle = \varphi(\lambda) \langle f, S^* e_{\lambda} \rangle.$$

So $S^*e_{\lambda} \in \ker(M_{\varphi} - \varphi(\lambda))^*$. Now we show that $\ker(M_{\varphi} - \varphi(\lambda))^* = \ker(M_z - \lambda)^*$. Let $\varphi - \varphi(\lambda) = (z - \lambda)h(z)$. Since $\operatorname{ran}(M_z - \lambda) = \ker e_{\lambda}$ and φ is univalent, $h \in H^2(\beta)$ and $h \neq 0$ on $\bar{\mathbb{D}}$. Also condition $\sum_{n} \frac{1}{\beta(n)^2} < \infty$ implies that $h \in C(\bar{\mathbb{D}})$. Thus $\frac{1}{h} \in H^{\infty}(\mathbb{D})$. Since \mathbb{D} is simply connected, by the Farrel-Rubel-Shields Theorem [1, Theorem 5.1, p.151], there is a uniformly bounded sequence $\{p_n\}$ of polynomials converging pointwise to $\frac{1}{h}$. But M_z is polynomially bounded, thus $\|M_{p_n}\| \leq c\|p_n\|_{\mathbb{D}} \leq c_0$, by passing to a subsequence, we may assume that M_{p_n} converges to an operator A in the weak operator topology. By the same method used in the proof of Proposition 2 of [2], we can see that $A = M_{1/h}$ and so $\frac{1}{h} \in M(H^2(\beta))$. Note that $(M_z - \lambda)f = (M_{\varphi} - \varphi(\lambda))\frac{f}{h}$ for every f in $H^2(\beta)$. Thus indeed $\operatorname{ran}(M_z - \lambda) = \operatorname{ran}(M_{\varphi} - \varphi(\lambda))$. Now condition $\ker(M_z - \lambda)^* = \mathbb{C}e_{\lambda}$ implies that $S^*e_{\lambda} = g(\lambda)e_{\lambda}$ for some constant $g(\lambda)$. Therefore

$$(Sf)(\lambda) = \langle Sf, e_{\lambda} \rangle = \langle f, S^*e_{\lambda} \rangle = g(\lambda)f(\lambda)$$

for all λ in \mathbb{D} . Thus $S=M_g$ and hence $g\in M(H^2(\beta))$. Now we show that M_g is compact. Since $TM_{\varphi}+M_{\varphi}T$ is compact, $TM_{\varphi^2}+M_{\varphi}TM_{\varphi}$ and $M_{\varphi}TM_{\varphi}+M_{\varphi^2}T$ are compact. This implies that $M_g=S=TM_{\varphi^2}-M_{\varphi^2}T$ is compact and so by the Fredholm alternative theorem, g=0. So $TM_{\varphi^2}=M_{\varphi^2}T$ and we have

$$M_{\varphi}(TM_{\varphi} + M_{\varphi}T) = M_{\varphi}TM_{\varphi} + TM_{\varphi^2} = (TM_{\varphi} + M_{\varphi}T)M_{\varphi}.$$

Hence $M_{\varphi}S = SM_{\varphi}$ where $S = TM_{\varphi} + M_{\varphi}T$. By the same technique used in the above argument, we can see that $S = M_g$ that is compact. So by the Fredholm alternative theorem, g = 0 which implies that $TM_{\varphi} = -M_{\varphi}T$. Now for $f \in H^2(\beta)$ we have

$$\langle f, M_{\varphi}^* T^* e_{\lambda} \rangle = \langle -M_{\varphi} T f, e_{\lambda} \rangle = -\varphi(\lambda) \langle f, T^* e_{\lambda} \rangle.$$

Thus $T^*e_{\lambda} \in \ker(M_{\varphi} + \varphi(\lambda))^*$. Now we show that $\ker(M_{\varphi} + \varphi(\lambda))^* = \ker(M_z + \lambda)^*$. Let $\varphi + \varphi(\lambda) = (z + \lambda)\psi(z)$. Since $\operatorname{ran}(M_z + \lambda) = \ker e_{-\lambda}$ and φ is univalent, $\psi \in H^2(\beta)$ and $\psi \neq 0$ on $\bar{\mathbb{D}}$. Thus $\frac{1}{\psi} \in M(H^2(\beta))$. Also note that $(M_z + \lambda)f = (M_{\varphi} + \varphi(\lambda))\frac{f}{\psi}$ for every f in $H^2(\beta)$. Thus indeed $\operatorname{ran}(M_z + \lambda) = \operatorname{ran}(M_{\varphi} + \varphi(\lambda))$. Since $\ker(M_z + \lambda)^* = \mathbb{C}e_{-\lambda}$ we have $\ker(M_{\varphi} + \varphi(\lambda))^* = \mathbb{C}e_{-\lambda}$ which implies that $T^*e_{\lambda} = g(\lambda)e_{-\lambda}$ for some constant $g(\lambda)$. Therefore

$$(Tf)(\lambda) = \langle Tf, e_{\lambda} \rangle = g(\lambda) \langle f, e_{-\lambda} \rangle = g(\lambda)(C_{-z}f)(\lambda)$$

for all λ in \mathbb{D} . Thus $T = M_g C_{-z}$ and hence $g \in M(H^2(\beta))$. Now let n be an even integer. Then $TM_{\varphi^3} = M_{\varphi^3}T$ and we have

$$(TM_{\varphi^2} - M_{\varphi^2}T)M_{\varphi} = -M_{\varphi}(TM_{\varphi^2} - M_{\varphi^2}T).$$

Hence similar to the above argument, $TM_{\varphi^2}-M_{\varphi^2}T=M_gC_{-z}$ for some g in $M(H^2(\beta))$. Since $TM_{\varphi}-M_{\varphi}T$ is compact, $TM_{\varphi^2}-M_{\varphi^2}T$ is also compact. So $M_g=M_gC_{-z}\circ C_{-z}$ is compact and by the Fredholm alternative theorem, g=0 which implies that $TM_{\varphi^2}=M_{\varphi^2}T$. By continuing this way, we conclude that $TM_{\varphi}=M_{\varphi}T$ and so as we saw in the above argument, there exists h in $M(H^2(\beta))$ such that $T=M_h$. This completes the proof. \square

Theorem 4. Let $\sum_{n} \frac{1}{\beta(n)^2} < \infty$ and $\varphi \in M(H^2(\beta))$ be an odd univalent map. Also let for some $n \in \mathbb{N}$, $TM_{\varphi^3} = (-1)^n M_{\varphi^3} T$, $TM_{\varphi} + (-1)^n M_{\varphi} T$ is compact and $M_{\varphi^2} TM_{\varphi} = (-1)^n M_{\varphi} TM_{\varphi^2}$. Then $T = M_g C_{-z}$ for some g in $M(H^2(\beta))$ if n is odd and $T = M_h$ for some h in $M(H^2(\beta))$ if n is even.

Proof. First let n be an odd integer. Note that since $TM_{\varphi} - M_{\varphi}T$ is compact, $TM_{\varphi^2} - M_{\varphi^2}T$ is also compact. We have

$$M_{\varphi}(TM_{\varphi^2} - M_{\varphi^2}T) = -M_{\varphi^2}TM_{\varphi} + TM_{\varphi^3}$$
$$= (TM_{\varphi^2} - M_{\varphi^2}T)M_{\varphi}.$$

Thus $M_{\varphi}S = SM_{\varphi}$ where $S = TM_{\varphi^2} - M_{\varphi^2}T$ that is compact. Now by a similar method used in the proof of Theorem 3, we can see that $S = M_g$ for some g in $M(H^2(\beta))$. Since S is compact, g = 0 which implies that $TM_{\varphi^2} = M_{\varphi^2}T$. Again by the proof of Theorem 3, $T = M_h$ for some h in $M(H^2(\beta))$. Now let n be an even integer. Then since $TM_{\varphi} + M_{\varphi}T$ is compact, we can see that $TM_{\varphi^2} - M_{\varphi^2}T$ is also compact. Now we have

$$M_{\varphi}(TM_{\varphi^2} - M_{\varphi^2}T) = M_{\varphi^2}TM_{\varphi} - TM_{\varphi^3} = -(TM_{\varphi^2} - M_{\varphi^2}T)M_{\varphi}.$$

Thus $M_{\varphi}S = -SM_{\varphi}$ where $S = TM_{\varphi^2} - M_{\varphi^2}T$. So there exists g in $M(H^2(\beta))$ such that $S = M_gC_{-z}$. Since S is compact, $M_g = S \circ C_{-z}$ is also compact and so g = 0. Thus S = 0 which implies that $TM_{\varphi^2} = M_{\varphi^2}T$ and $M_{\varphi}(TM_{\varphi} + M_{\varphi}T) = (TM_{\varphi} + M_{\varphi}T)M_{\varphi}$. By continuing as above, we see that $TM_{\varphi} = -M_{\varphi}T$ which implies that there exists g in $M(H^2(\beta))$ such that $T = M_gC_{-z}$. This completes the proof. \square Theorems 3 and 4 can be extended easily for the case $TM_{\varphi^m} = (-1)^n M_{\varphi^m}T$, $m \geq 3$.

References

- [1] T. Gamelin, Uniform algebras, Chelsea, New York, 1984.
- [2] K. Seddighi and B. Yousefi, On the reflexivity of operators on function spaces, Proc. Amer. Math. Soc., 116 (1992), 45-52.
- [3] A. Shields and L. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J., 20 (1971), 777-788.
- [4] A. Shields, Weighted shift operators and analytic function theory, Math. Survey, Amer. Math. Soc. Providence, 13 (1974), 49-128.
- [5] B. Yousefi, On the space $\ell^p(\beta)$, Rend. Circ. Mat. Palermo, Serie II, Tomo XLIX (2000), 115-120.
- [6] B. Yousefi, On the commutant of certain multiplication operators on some Banach spaces of analytic functions, Far East Journal of Mathematical Sciences, 3 (2001), 313-324.
- [7] B. Yousefi, Bounded analytic structure of the Banach space of formal power series, Rend. Circ. Mat. Palermo, 51 (2002), 403-410.

- [8] B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces of formal power series, Southeast Asian Bulletin of Mathematics, 27 (2003), 575-582.
- [9] B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces $H^p(\beta)$, Czechoslovak Mathematical Journal, 54(129) (2004), 261-266.
- [10] N. Zorboska, Cyclic composition operators on smooth weighted Hardy spaces, Rocky Mountain J. of Math., 29 (1999), 725-740.

Bahman Yousefi
Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, Iran

E-mail: byousefi@hafez.shirazu.ac.ir

Rahmat Soltani
Department of Mathematics
Shiraz Payam-e-noor University
Shiraz, Iran
E-mail: Rsoltani@spnu.ac.ir