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ON THE HILBERT SPACE OF FORMAL POWER
SERIES

B. YoUSEFI AND R. SOLTANI

Abstract. Let {8(n)}3Zq be a sequence of positive numbers such
that ,8(0) = 1. We consider the space H?(3) of all power series
f(z) = f(n) ™ such that " |F(m)128(n)? < oo. We link the
ideas of T;ubspa.ces of H?(f) ax;lt; 0zero sets. We give some sufficient
conditions for a vector in Hz(ﬁ) to be eyclic for the multiplication
operator M,. Alsoc we characterize the commutant of some multi-

plication operators acting on H2{3).

Introduction

Let {8(n)} be a sequence of positive numbers with 3(0) = 1. We

consider the space of sequences f = {f(n)}>%, such that

1A = If11% = Z |f(n)[28(n)*

The notation f(z) = E f(n)z" shall be used whether or not the series

converges for any value of z. These are called formal power series. Let
H?(3) denote the space of such formal power series. These are Hilbert

spaces with the norm || - ||3 ({4]). The Hardy, Bergman and Dirichlet

Received Jun 28, 2004 ; Revised August 23, 2004.

2000 Mathematical Subject Classification: Primary 47B37; Secondary
47A16.

Keywords and phrases: Hilbert space of formal power series, multiplier, cyclic
vector, bounded point evaluation, polynomially bounded, Farrell-Rubel-Shields The-

orem, finite codimension subspace.



300 B. Yousefi and R. Soltani

spaces can be viewed in this way when respectively 8(n) = 1,8(n) =
(n+ 1)~2 and B(n) = (n + 1)/2. Let fi(n) = 6(n). So fu(z) = 2
and then {fi}x is a basis such that || fx|| = 8(k). Now consider M,, the
operator of multiplication by z on H%(g):

o0

(M f Z Lt

n=0

where

In other words
(M. f)(n) =

Clearly M, shifts the basis {fi}x. The operator M, is bounded if
and only if {8(k + 1)/8(k)}+ is bounded and in this case
o Blk+n)
M7 = SUP =2y
Throughout this paper we suppose that M, is bounded. The composi-
tion operator C,, on H?(3} is defined by C,f = f o for f € H%(3).
We denote the set of multipliers {p € H2(3) : ¢ H?(3) C H?(3)} by
M(H?(3)) and the linear transformation by ¢ on H?(3) by M,. Here
if p € M(H?(3)) and f is in H%(53), then

= (> p(n)z") Zf(n ")—Zh(m.z

n=0,1,2,....

where h(n) = Z @(k)f(n — k). Each multiplier is a bounded analytic

function ([3]).

Remember that a complex number A is said to be a bounded point
evaluation on H2(g) if the functional of point evaluation at A, ey, is
bounded. Each point of the disc {z : |2| < liminf 8(n)}/"} is a bounded
point evaluation on H%(3) ([4,5)).
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If  is a bounded domain in the complex plane, then by C(Q), H()
and H>(Q) we mean respectively the set of continuous functions, ana-
lytic functions and the set of bounded analytic functions on 2. By |- [la
we denote the supremum norm on 1.

We say that a vector r in a Banach space X is a cyclic vector of a

bounded operator A on X if
X = span{A"z:n=0,1,2,...}.

Here span{-} is the closed linear span of the set {-}.
Main results

Recall that H2(3) has division property: if f € H?(8) and f(A) =0,
then f/(z — \) is in H%(3). The open unit disc will be denoted by D.
If liminf 8(n)/" = 1, then H*(8) C H(D) and if }_ 5r5z < oo, then
H?(3) c H(D)N C(D). Also note that the spectrur?} of M,, o(M,), is
equal to the set {\: |\ < 7(M,)} where r(M,) is the spectral radius of
M,. Clearly liminf 8(n)'/™ < r(M,) < ||M,||. For a good source of this
topics see [4,5,6,7,8,9,10].

In the following theorem we link the ideas of subspaces of H2() and

zero sets.

Theorem 1. Let r(M.) = liminf 3(n)V/* = 1 and ran(M, — X) be
dense in H2() for every A € dD. Also assume that H2(8) has division
property. If M is an invariant subspace of H?(f) of finite codimension,
and @ = {z €D : f(z) = 0 for all f € M}, then 2 is a finite set and
M={fcH*B): f(z) =0forall z € N}.

Proof. First note that since liminf 8(n)'/" = 1, the functions of H%(3)
o0

are analytic on . Suppose that (2 is infinite and let {z;} 32, be dis-
tinct points of ). Let pi,p2,... be polynomials in H () such that
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pi(z;) = 0for y = 1,...,i—1and i > 1, also p;(z;) = 1 for all
i>1. Nowif c1py + - + cup, € M where ¢y, c3,...,¢, are in C, then
€1 =c¢g2 = -+ = ¢, = 0. This contradicts the assumption that M has
finite codimension in H?(3). Since each zero of an analytic function has
finite multiplicity, §2 is indeed a finite set. For the second part note that
if f € M, then f(z) =0 for all z € §2. For the inverse inclusion suppose
that f € H*(0) and f(z) = 0 for all z € Q. Alsolet 2 = {A1, Ay, ... s A}t
and put g(z) = (z — A\)(z — A2)...(z — A\y). Since M is an invariant
finite codimensional subspace of H2(3), by the hypothesis of the theo-
rem M = pH?(j3) for some polynomial p where p vanishes on . Write
p = gqs. Here s is a polynomial such that s(A\;) # 0 fori =1,... n
Let A be a root of s. If A € D, then it should be A € § that is a
contradiction since s(A;) # 0fori=1,...,n. So A € C\D. If A gD,
then A ¢ o(M.) since r(M,) = 1. So M, — X is invertible which implies
that (z — A)H?(8) = H?*(B). If A € 9D, then (z — \)H%(f) is dense
in H%(3). Hence M = pH?*(3) = qsH%(5) = qH*(3). Since H%(3)
contains constant functions, ¢ € M. Now if f € H%(3) and f(z) = 0 for
all z € @ = {A1,..., A}, by division property we have % € H?(B). So
f € ¢H?*(3) = M. This completes the proof. O]

Now we investigate the cyclicity of the multiplication operator M,
and we give some sufficient conditions for a vector to be cyclic for the

multiplication operator M, acting on H?(3).

o0

~

Theorem 2. Let f(z) = Y. f(n)z" € H?*(3) with f(0) # 0. If the

n=0
sequence {”M ”}n €fand0< = fB—(n(:Tl), then f is a cyclic vector

of M, on H2(ﬂ).

Proof. Put M = span{M}'f :n =0,1,2,...}. Let g = }_ 4(n)z" be
n=0
any vector in H?(3) such that < M*f g >=0foralln=0,1,2,.... It
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will suffice to show that ¢ = 0. We note that

MrF =" f(k)2"F =" f(k - n)
k=0 k=n

Now the relation < M7 f, g >= 0 implies that
0 = > flk—n)3ik)Bk)>
k=n

F(0)§(n)B(n)* + Z f(k = n)a(k)B(k)>.

k=n-+1

fl

Thus we have

g(n)gdin)| < —n)g(k)3{k
|3(n)B(n)] < If(0 )Ik§n+1|f )9 (R)B(k)?|
_ Z b= B0 — T8 B(k)

Since |MZ]| = sn;p %’%{—)—) we have ¢ = sup % < o0 and so

Bn + k) < cB(k)B(n)
for all n and k. Thus for k > n + 1,

Blk—n—1pFn+ 1).

Bk) < cflk—n—1).8(n+1) =cB(k—n). Bk —n)

Therefore
By plh—n—1) fa+1)
Blk—n)B(n) — =~ Blk—n) = B(n)
LGRSV I
- Bn) m B(m+1)
cB(n+1)
=5 B

Since {%}n € 2 for all k, clearly {%%L} € ¢2. We have

clflilgll 2
JHOIN 5(")

9(m)B(n)] <
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for all n. Now since {%IT)}” € £2, we can see that ML is finite
dimensional and so there exists an integer m > 0 such that (M})™|,,1 =
0 and (M7)™ Y31 # 0. Therefore

(M)™g) = (MZ)™(D_4(k)2*) =0
k=0

o0 A ~
and so g(k) = 0 for all K > m. Thus for h = Y h(n)z" in M, h(k) =0

n=0

for all & < m. Since f € M with f(0) # 0, it follows that = = 0. Thus
d(k) =0 for all k£ and so g = 0. This completes the proof. O

Let H%(8) c H(D). We say that M, is polynomially bounded
on H2(B) if ||M,| < clpllp for every polynomial p. In [2] we have
shown that if M, is polynomially bounded, then it is reflexive. In the
following two theorems we suppose that H?(3) has division property,
liminf 3(n)/" = 1, ker(M, — X\)* = Ce, for every A in D, M, is poly-
nomially bounded and the composition operator C_, is bounded. Note
that (C_,f)(A) = f(=A) for f in H%(3). In Theorems 3 and 4, under
sufficient conditions we characterize the structure of an operator T when
for some n € N, TM3 = (—1)"M T, ¢ € M(H?*(3)).

Theorem 3. Let Zwi)g < oo and ¢ € M(H?(3)) be an odd uni-

valent map. Also let for some n € N, TM_s = (=1)"M_T, TM, +
(—=1)"*'M,T is compact and M,2TM,, = (—1)*M,TM,2. Then there
exists h in M(H?(83)) such that T = Mj, if n is even and T = M,C_,
for some g in M(H?(B)) if n is odd.

Proof. First let n be an odd integer number. Then we have

TM, — M T)M, = ~MaT + M, TM,
@ P ® ” pd My
= M,(TMj — M,.T),
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Thus SM, = M,S where S = TM_2 — M_2T. Note that for f € H,
< fiMzS%ey >=< MySf,ex >= p(A) < f,S%eyr > .

So S*ey € ker(M, — ¢()))*. Now we show that ker(M, — ¢(\))* =
ker(M,—\)*. Let o—p(A) = (z—A)h(z). Since ran(M,—A) = kere, and
o is univalent, b € H%(3) and h # 0 on ID. Also condition T}l)g < 00
implies that b € C(ID). Thus + € H>*(D). SinceD is simpl; connected,
by the Farrel-Rubel-Shields Theorem [1, Theorem 5.1, p.151], there is a
uniformly bounded sequence {p,} of polynomials converging pointwise
to +. But M. is polynomially bounded, thus |[My, || < cllpalip < <o,
by passing to a subsequence, we may assume that M, converges to an
operator A in the weak operator topology. By the same method used
in the proof of Proposition 2 of [2], we can see that A = M, and so
1 e M(H?(8)). Note that (M, — A)f = (M, ~ @(N)£ for every f in
H?(8). Thus indeed ran(M, — A} = ran(M, — ¢(A)). Now condition
ker(M, — \)* = Ce, implies that S*ey = g(A)ey for some constant g(A).

Therefore
(S =< Sf,ex >=< [f, S\ >= g(A) f(})

for all A in D. Thus S = M, and hence g € M(H?*(3)). Now we show
that M, is compact. Since TM, + M,T is compact, TM_2 + M,TM,
and M,TM,+ M 2T are compact. This implies that M; = 5 = TM,—
M 2T is compact and so by the Fredholm alternative theorem, g = 0.
So TM,2 = M2T and we have

My(TM, + M,T) = M,TM, + TM,2 = (TM, + M,T)M,.

Hence M,S = SM,, where S = TM, + M,T. By the same technique

used in the above argument, we can see that S = M, that is compact. So
by the Fredholm alternative theorem, g = 0 which implies that TM, =
—M,T. Now for f € H?() we have

< [, M3T ey >=< =M,Tf,ex>= —p(A) < f,T"exr > .
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Thus T"ey € ker(M, + ¢(A))*. Now we show that ker(M, + ¢(\)* =
ker(M, + A)*. Let ¢+ () = (z+ A)¢(2). Since ran(M, +X) = kere_j
and ¢ is univalent, ¢ € H*(5) and ¢ # 0 on D. Thus § € M(H%(g)).
Also note that (M, + A)f = (M, + 90()\))£ for every f in H%(3). Thus
indeed ran(M; + A) = ran(M,, + ©(})). Since ker(M, + A\}* = Ce_, we
have ker(M, + ©(A))* = Ce_ which implies that T*e) = g(A)e_, for

some constant g(A). Therefore

(THN) =<Tfiex>=g(A) < fe_n >= g(A)(C_, f)(N)

for all A inD. Thus T = M,C_, and hence g € M(H?(3)). Now let n
be an even integer. Then TMgs = MsT and we have

(TM e — Mp2T)M, = —M(TM,2 — M, T).

Hence similar to the above argument, Tsz =M T = M,C_, for some
g in M(H?*(8)). Since TM, — M, T is compact, TMy: — MT is also
compact. So My = M,C_, 0 C_, is compact and by the Fredholm alter-
native theorem, g = 0 which implies that TM_2 = M_T. By continuing
this way, we conclude that TM, = M,T and so as we saw in the above
argument, there exists k in M(H?(8)) such that T = M;. This com-
pletes the proof. O

Theorem 4. Let Y ﬁg < oo and ¢ € M(H?(3)) be an odd univalent
map. Also let for sgme ne€WN, TMy = (-1)"M_T, TM,+(-1)"M,T
is compact and M_:TM, = (—1)"M,TM_2. Then T = M,C_, for some
gin M(H*(8)) if n is odd and T = M), for some h in M(H2(3)) if n is

ever.

Proof. First let n be an odd integer. Note that since TM,, — M,T is
compact, TM 2 — M_.T is also compact. We have

My(TMy2 — MpT) = —MpeTM, +TM,,
= (TMy — MpT)M,.
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Thus M,S = SM, where § = T'M_» — M 2T that is compact. Now by a
similar method used in the proof of Theorem 3, we can see that S = M,
for some g in M(H?(3)). Since S is compact, g = 0 which implies that
TM,: = M_T. Again by the proof of Theorem 3, T = M}, for some h
in M(H2(3)). Now let n be an even integer. Then since TM, + M, T is

compact, we can see that TM 2 — M_2T is also compact. Now we have
My(TM 2 — MpT) = M2TMy, — TMs = —(TMy — MpT)M,.

Thus M,S = —SM, where § = TM 2 — M_2T. So there exists g in
M(H?(3)) such that § = M,C_.. Since S is compact, My = SoC_;

is also compact and so g = 0. Thus S = 0 which implies that TM_» =
M_,2T and M,(TM, + M,T) = (TM, + M,T)M,. By continuing as
above, we see that TM, = —M_,T which implies that there exists g in

M (H?(3)) such that T = M,C_,. This completes the proof. J

Theorems 3 and 4 can be extended easily for the case TMym = (—1)"MmT,
m > 3.
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